1 | ERMAYANTI A, NIDIA ENJELITA S, NURAINI S, et al. Dempster-Shafer method for diagnose diseases on vegetable[C]// 2018 6th International Conference on Cyber and IT Service Management (CITSM). Piscataway, New York, USA: IEEE, 2018. | 2 | 刁智华, 袁万宾, 刁春迎, 等. 病害特征在作物病害识别中的应用研究综述[J]. 江苏农业科学, 2019, 47(5): 71-74. | 2 | DIAO Z, YUAN W, DIAO C, et al. Review on Application of disease characteristics in crop disease identification[J]. Jiangsu Agricultural Sciences, 2019, 47(5): 71-74. | 3 | 郭小清, 范涛杰, 舒欣. 基于改进Multi-Scale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169. | 3 | GUO X, FAN T, SHU X.Tomato leaf diseases recognition based on improved Multi-Scale AlexNet[J]. Transactions of the CSAE, 2019, 35(13): 162-169. | 4 | 王艳玲, 张宏立, 刘庆飞, 等. 基于迁移学习的番茄叶片病害图像分类[J]. 中国农业大学学报, 2019, 24(6): 124-130. | 4 | WANG Y, ZHANG H, LIU Q, et al. Image classification of tomato leaf diseases based on transfer learning[J].Journal of China Agricultural University,2019, 24(6): 124-130. | 5 | 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7. | 5 | ZHAO C. State-of-the-art and recommended developmental strategic objectives of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7 | 6 | 高万林, 张港红, 张国锋, 等. 核心技术原始创新引领智慧农业健康发展[J]. 智慧农业, 2019, 1(1): 8-19. | 6 | GAO W, ZHANG G, ZHANG G, et al. Original innovation of key technologies leading healthy development of smart agricultural[J]. Smart Agriculture, 2019, 1(1): 8-19. | 7 | 黄文江, 师越, 董莹莹, 等. 作物病虫害遥感监测研究进展与展望[J]. 智慧农业, 2019,1(4): 1-11. | 7 | HUANG W, SHI Y, DONG Y. Progress and prospects of crop diseases and pests monitoring by remote sensing[J]. Smart Agriculture, 2019, 1(4): 1-11. | 8 | 郭小清, 范涛杰, 舒欣. 基于图像融合特征的番茄叶部病害的识别[J]. 湖南农业大学学报(自然科学版), 2019, 45(2): 212-217, 224. | 8 | GUO X, FAN T, SHU X. Recognition of tomato leaf disease based on image fusion feature[J]. Journal of Hunan Agricultural University(Natural Sciences), 2019, 45(2): 212-217, 224. | 9 | 王秀清, 陈琪, 杨世凤. 基于自适应布谷鸟与反向传播协同搜索的病害识别系统[J]. 天津科技大学学报, 2020, 35(2): 69-73. | 9 | WANG X, CHEN Q, YANG S. Disease recognition system based on cooperative search of Cuckoo and BP algorithm[J]. Journal of Tianjing University of Science & Technology, 2020, 35(2): 69-73. | 10 | BRAHIMI M, BOUKHALFA K, MOUSSAOUI A. Deep learning for tomato diseases: Classification and symptoms visualization[J]. Applied Artificial Intelligence Artificial Intelligence, 2017, 31: 299-315. | 11 | 王雪, 马卓, 王欣, 等.基于颜色和形状特征的黄瓜霜霉病自动识别研究[J]. 安徽农业大学学报, 2013, 40(6): 1071-1075. | 11 | WANG X, MA Z, WANG X, et al. Automatic recognition of cucumber downy mildew based on color and shape feature[J]. Journal of Anhui Agricultural University, 2013, 40(6): 1071-1075. | 12 | 张红涛, 李艺嘉, 谭联, 等. 基于 CS-SVM 的谷子叶片病害图像识别[J]. 浙江农业学报, 2020, 32(2): 274-282. | 12 | ZHANG H, LI Y, TAN L, et al. Image recognition of millet leaf disease based on CS-SVM[J]. Acta Agriculturae Zhejiangensis, 2020, 32(2): 274-282. | 13 | 马晓丹, 朱可心, 关海鸥, 等. 农作物图像特征提取技术及其在病害诊断中的应用[J]. 黑龙江八一农垦大学学报, 2019, 31(2): 93-99. | 13 | MA X, ZHU K, GUAN H, et al. Crop image feature extraction and its application in disease diagnosis[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(2): 93-99. | 14 | 阎园园, 陈华, 姜波. 基于群智能算法分类模型的番茄病害识别[J]. 江苏农业科学, 2020, 48(1): 219-224. | 14 | YANG Y, CHEN H, JIANG B. Tomato disease recognition based on swarm intelligence algorithm classification model[J]. Jiangsu Agricultural Sciences, 2020, 48(1): 219-224. | 15 | 马超, 袁涛, 姚鑫锋, 等. 基于HOG+SVM的田间水稻病害图像识别方法研究[J]. 上海农业学报, 2019, 35(5): 131-136. | 15 | MA C, YUAN T, YAO X, et al. Study on image recognition method of rice disease in field based on HOG + SVM[J]. Acta Agriculturae Shanghai, 2019, 35(5): 131-136. | 16 | 刘翠翠, 杨涛, 马京晶, 等. 基于PCA-SVM的麦冬叶部病害识别系统[J]. 中国农机化学报, 2019, 40(8): 132-136. | 16 | LIU C, YANG T, MA J, et al. Identification system for leaf diseases of Ophiopogon japonicus based on PCA-SVM[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(8): 132-136. | 17 | 党满意, 孟庆魁, 谷芳, 等. 基于机器视觉的马铃薯晚疫病快速识别[J]. 农业工程学报, 2020, 36(2): 193-200. | 17 | DANG M, MENG Q, GU F, et al. Rapid recognition of potato late blight based on machine vision[J]. Transactions of the CSAE, 2020, 36(2): 193-200. | 18 | CASTELAO TETILA E, BRANDOLI MACHADO B, BELETE N A, et al. Identification of soybean foliar diseases using unmanned aerial vehicle images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2190-2194. | 19 | DURMUS H, GüNES E O, KIRCI M. Disease detection on the leaves of the tomato plants by using deep learning[C]// In Proceedings of the 2017 6th International Conference on Agro-Geoinformatics. Piscataway, New York, USA: IEEE, 2017: 1-5. | 20 | YAMAMOTO K, TOGAMI T, YAMAGUCHI N. Super-resolution of plant disease images for the acceleration of image-based phenotyping and vigor diagnosis in agriculture[J]. Sensors, 2017, 17: 2557. | 21 | 吴华瑞. 基于深度残差网络的番茄叶片病害识别方法[J]. 智慧农业, 2019, 1(4): 42-49. | 21 | WU H. Method of tomato leaf diseases recognition method based on deep residual network [J]. Smart Agriculture, 2019, 1(4): 42-49. | 22 | 李淼, 王敬贤, 李华龙, 等. 基于CNN和迁移学习的农作物病害识别方法研究[J]. 智慧农业, 2019, 1(3): 46-55. | 22 | LI M, WANG J, LI H, et al. Method for identifying crop disease based on CNN and transfer learning[J]. Smart Agriculture, 2019, 1(3): 46-55. | 23 | SAKANO H, MUKAWA N, NAKAMURA T. Kernel mutual subspace method and its application for object recognition[J]. Electronics and Communications in Japan (Part II: Electronics), 2005, 88(6): 45-53. | 24 | MARUKATAT S. Kernel matrix decomposition via empirical kernel map[J]. Pattern Recognition Letters, 2016, 77: 50-57. | 25 | WOF L, SHASHUA A. Kernel principal angles for classification machines with applications to image sequence interpretation[C]// 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003). Piscataway, New York, USA: IEEE, 2003: 635-640. | 26 | HUGHES D P, SALATHE M. An open access repository of images on plant health to enable the development of mobile disease diagnostics[J/OL]. Computer Science, 2015. . | 27 | MAEDA K I, WATANABE S. A pattern matching method with local structure[J]. IEICE Transactions on Information and Systems, 1985, 68(3): 345-352. | 28 | PVAN OVERSCHEE, DE MOOR B. N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems[J]. Automatica, 1992, 30(1): 75-93. | 29 | GAO P, ZHANG Y, ZHANG L, et al. Development of a recognition system for spraying areas from unmanned aerial vehicles using a machine learning approach[J]. Sensors, 2019, 19(2): ID 313. | 30 | ZHANG Y, AHAMED T, GAO P. Development of a rescue system for agricultural machinery operators using machine vision[J]. Biosystems Engineering, 2018, 169: 149-164. | 31 | STRICKER M A, Orengo M. Similarity of color images[C]// IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology. International Society for Optics and Photonics, San Jose, CA, United States, 1995: 381-392. | 32 | PASS G, RAMIN Z, JUSTIN M. Comparing images using color coherence vectors[C]// Fourth ACM international conference on Multimedia. February, New York, NY, USA: the Association for Computing Machinery,1997: 65-73. | 33 | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[J]. IEEE Computer Society Conference on Computer Vision & Pattern Recognition, 2005, 1(12): 886-893. | 34 | ZHANG K, WU Q, LIU A, et al. Can deep learning identify tomato leaf disease?[J]. Advances in Multimedia, 2018: 1-10. | 35 | ARAVIND K R, RAJA P, ANIIRUDH R. Tomato crop disease classification using pre-trained deep learning algorithm[J].Procedia Computer Science, 2018, 133:1040-1047. |
|