Smart Agriculture ›› 2023, Vol. 5 ›› Issue (2): 13-22.doi: 10.12133/j.smartag.SA202304009
• Topic--Machine Vision and Agricultural Intelligent Perception • Previous Articles Next Articles
LIU Yongbo(), GAO Wenbo, HE Peng(), TANG Jiangyun, HU Liang
Received:
2023-04-18
Online:
2023-06-30
corresponding author:
HE Peng, E-mail:7203655@qq.com
About author:
LIU Yongbo, E-mail:dylyb618@163.com
Supported by:
CLC Number:
LIU Yongbo, GAO Wenbo, HE Peng, TANG Jiangyun, HU Liang. Apple Phenological Period Identification in Natural Environment Based on Improved ResNet50 Model[J]. Smart Agriculture, 2023, 5(2): 13-22.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202304009
Table 4
Performances comparison of different classification models in apple tree phenological period recognition experiments
模型名称 | 迭代轮次 | 验证集准确率/% | 测试集准确率/% | 平均检测时间/ms |
---|---|---|---|---|
AlexNet | 50 | 86.72 | 79.63 | 2.07 |
VGG16 | 50 | 91.28 | 85.06 | 3.20 |
ResNet18 | 50 | 90.54 | 83.41 | 1.83 |
ResNet34 | 50 | 91.80 | 83.27 | 2.15 |
ResNet101 | 50 | 95.39 | 86.36 | 2.83 |
改进ResNet50 | 50 | 96.35 | 91.94 | 2.19 |
1 | 樊泽泽. 苹果果实检测与物候期自动识别方法的研究与实现[D]. 太原: 太原理工大学, 2020. |
FAN Z Z. Research and implementation on automatic method of apple detection and phenological period classification[D]. Taiyuan: Taiyuan University of Technology, 2020. | |
2 | 高登涛, 李丙智. 图说苹果高效栽培: 全彩版[M]. 北京: 机械工业出版社, 2018: 60-104. |
GAO D T, LI B Z. Caption efficient cultivation of apple: full color edition[M]. Beijing: China Machine Press, 2018: 60-104. | |
3 | CHEN Z Y, SU R, WANG Y L, et al. Automatic estimation of apple orchard blooming levels using the improved YOLOv5[J]. Agronomy, 2022, 12(10): ID 2483. |
4 | 李诗涛, 张王菲, 赵丽仙, 等. 基于时序PolSAR影像与决策树模型的油菜物候期识别[J]. 浙江农业学报, 2021, 33(11): 2116-2127. |
LI S T, ZHANG W F, ZHAO L X, et al. Phenological period identification of oilseed rape based on time-series PolSAR image and decision tree model[J]. Acta agriculturae zhejiangensis, 2021, 33(11): 2116-2127. | |
5 | 王志毅, 王嘉佩, 杜爱军, 等. 基于深度学习的自动判别茶叶生长的物候期模型的建立[J]. 气象科技进展, 2021, 11(2): 119-120, 137. |
WANG Z Y, WANG J P, DU A J, et al. A deep-learning based model used to automaticly identification white tea's phenological period[J]. Advances in meteorological science and technology, 2021, 11(2): 119-120, 137. | |
6 | TAN S Y, LU H H, YU J, et al. In-field rice panicles detection and growth stages recognition based on RiceRes2Net[J]. Computers and electronics in agriculture, 2023, 206: ID 107704. |
7 | LI Y, LIU H B, WEI J L, et al. Research on winter wheat growth stages recognition based on mobile edge computing[J]. 2023, 13(3): 534-550. |
8 | AGUIAR A S, MAGALHÃES S A, DOS SANTOS F N, et al. Grape bunch detection at different growth stages using deep learning quantized models[J]. Agronomy, 2021, 11(9): ID 1890. |
9 | TIAN Y N, YANG G D, WANG Z, et al. Apple detection during different growth stages in orchards using the improved YOLOv3 model[J]. Computers and electronics in agriculture, 2019, 157: 417-426. |
10 | 许增, 王志伟, 胡桃花, 等. 改进的轻量级YOLO在苹果物候期自动观测中的研究[J]. 计算机工程与设计, 2021, 42(12): 3478-3484. |
XU Z, WANG Z W, HU T H, et al. Improved lightweight YOLO in automatic observation of apple phenology[J]. Computer engineering and design, 2021, 42(12): 3478-3484. | |
11 | 傅隆生, 宋珍珍, ZHANG X, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120. |
FU L S, SONG Z Z, ZHANG X, et al. Applications and research progress of deep learning in agriculture[J]. Journal of China agricultural university, 2020, 25(2): 105-120. | |
12 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778. |
13 | LI X, RAI L. Apple leaf disease identification and classification using ResNet models[C]// 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT). Piscataway, NJ, USA: IEEE, 2021: 738-742. |
14 | LI B Q, HE Y Y. An improved ResNet based on the adjustable shortcut connections[J]. IEEE access, 2018, 6: 18967-18974. |
15 | 杨春兰, 朱鹏飞, 许成祥. 融合注意力机制的淡水鱼类识别方法[J]. 西南民族大学学报(自然科学版), 2023, 49(1): 83-93. |
YANG C L, ZHU P F, XU C X. Freshwater fish identification method incorporating attention mechanism[J]. Journal of Southwest minzu university (natural science edition), 2023, 49(1): 83-93. | |
16 | 卓力, 袁帅, 李嘉锋. 基于ResNet50和通道注意力机制的行人多属性协同识别方法[J]. 测控技术, 2022, 41(8): 1-8, 15. |
ZHUO L, YUAN S, LI J F. Pedestrian multi-attribute collaborative recognition method based on ResNet50 and channel attention mechanism[J]. Measurement & control technology, 2022, 41(8): 1-8, 15. | |
17 | 刘永波, 黄强, 高文波, 等. 融合BERT-WWM和注意力机制的茶叶知识图谱构建[J]. 西南农业学报, 2022, 35(12): 2912-2921. |
LIU Y B, HUANG Q, GAO W B, et al. Construction of knowledge graph of integrating BERT-WWM and attention mechanism[J]. Southwest China journal of agricultural sciences, 2022, 35(12): 2912-2921. | |
18 | HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(8): 2011-2023. |
19 | HE J, JIANG D. Fully automatic model based on SE-ResNet for bone age assessment[J]. IEEE access, 2021, 9: 62460-62466. |
20 | 龙洁花, 郭文忠, 林森, 等. 改进YOLOv4的温室环境下草莓生育期识别方法[J]. 智慧农业(中英文), 2021, 3(4): 99-110. |
LONG J H, GUO W Z, LIN S, et al. Strawberry growth period recognition method under greenhouse environment based on improved YOLOv4[J]. Smart agriculture, 2021, 3(4): 99-110. | |
21 | 万鹏, 赵竣威, 朱明, 等. 基于改进Res Net50模型的大宗淡水鱼种类识别方法[J]. 农业工程学报, 2021, 37(12): 159-168. |
WAN P, ZHAO J W, ZHU M, et al. Freshwater fish species identification method based on improved Res Net50 model[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(12): 159-168. | |
22 | KINGMA D P, BA J. Adam: A method for stochastic optimization[EB/OL]. arXiv: , 2014. |
23 | DU H, WANG W, WANG X R, et al. Autonomous landing scene recognition based on transfer learning for drones[J]. Journal of systems engineering and electronics, 2023, 34(1): 28-35. |
24 | 刘翱宇, 吴云志, 朱小宁, 等. 基于深度残差网络的玉米病害识别[J]. 江苏农业学报, 2021, 37(1): 67-74. |
LIU A Y, WU Y Z, ZHU X N, et al. Corn disease recognition based on deep residual network[J]. Jiangsu journal of agricultural sciences, 2021, 37(1): 67-74. |
[1] | HE Feng, WU Huarui, SHI Yangming, ZHU Huaji. Recognition Method of Facility Cucumber Farming Behaviours Based on Improved SlowFast Model [J]. Smart Agriculture, 2024, 6(3): 118-127. |
[2] | XIA Xue, CHAI Xiujuan, ZHANG Ning, ZHOU Shuo, SUN Qixin, SUN Tan. A Lightweight Fruit Load Estimation Model for Edge Computing Equipment [J]. Smart Agriculture, 2023, 5(2): 1-12. |
[3] | ZHU Haipeng, ZHANG Yu'an, LI Huanhuan, WANG Jianwen, YANG Yingkui, SONG Rende. Classification and Recognition Method for Yak Meat Parts Based on Improved Residual Network Model [J]. Smart Agriculture, 2023, 5(2): 115-125. |
[4] | LI Yangde, MA Xiaohui, WANG Ji. Pineapple Maturity Analysis in Natural Environment Based on MobileNet V3-YOLOv4 [J]. Smart Agriculture, 2023, 5(2): 35-44. |
[5] | ZHAO Yu, REN Yiping, PIAO Xinru, ZHENG Danyang, LI Dongming. Lightweight Intelligent Recognition of Saposhnikovia Divaricata (Turcz.) Schischk Originality Based on Improved ShuffleNet V2 [J]. Smart Agriculture, 2023, 5(2): 104-114. |
[6] | ZHANG Wenjing, JIANG Zezhong, QIN Lifeng. Identifying Multiple Apple Leaf Diseases Based on the Improved CBAM-ResNet18 Model Under Weak Supervision [J]. Smart Agriculture, 2023, 5(1): 111-121. |
[7] | HAN Leng, HE Xiongkui, WANG Changling, LIU Yajia, SONG Jianli, QI Peng, LIU Limin, LI Tian, ZHENG Yi, LIN Guihai, ZHOU Zhan, HUANG Kang, WANG Zhong, ZHA Hainie, ZHANG Guoshan, ZHOU Guotao, MA Yong, FU Hao, NIE Hongyuan, ZENG Aijun, ZHANG Wei. Key Technologies and Equipment for Smart Orchard Construction and Prospects [J]. Smart Agriculture, 2022, 4(3): 1-11. |
[8] | DUAN Luojia, YANG Fuzeng, YAN Bin, SHI shuaiqi, QIN jifeng. Research Progress of Apple Production Intelligent Chassis and Weeding and Harvesting Equipment Technology [J]. Smart Agriculture, 2022, 4(3): 24-41. |
[9] | LI Yang, PENG Yankun, LYU Decai, LI Yongyu, LIU Le, ZHU Yujie. Development of Mobile Orchard Local Grading System of Apple Internal Quality [J]. Smart Agriculture, 2022, 4(3): 132-142. |
[10] | ZHANG Zhibo, ZHAO Xining, GAO Xiaodong, ZHANG Li, YANG Menghao. Accurate Extraction of Apple Orchard on the Loess Plateau Based on Improved Linknet Network [J]. Smart Agriculture, 2022, 4(3): 95-107. |
[11] | LI Dongbo, HUANG Lyuwen, ZHAO Xubo. Detection Method of Apple Mould Core Based on Dielectric Characteristics [J]. Smart Agriculture, 2021, 3(4): 66-76. |
[12] | LI Zhijun, YANG Shenghui, SHI Deshuai, LIU Xingxing, ZHENG Yongjun. Yield Estimation Method of Apple Tree Based on Improved Lightweight YOLOv5 [J]. Smart Agriculture, 2021, 3(2): 100-114. |
[13] | Xia Xue, Sun Qixin, Shi Xiao, Chai Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network [J]. Smart Agriculture, 2020, 2(1): 99-110. |
[14] | Wu Huarui. Method of tomato leaf diseases recognition method based on deep residual network [J]. Smart Agriculture, 2019, 1(4): 42-49. |
[15] | Cao Yudong, Qi Weiyan, Li Xian, Li Zhemin. Research progress and prospect on non-destructive detection and quality grading technology of apple [J]. Smart Agriculture, 2019, 1(3): 29-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||