1 |
FENG A J, ZHOU J F, VORIES E D, et al. Yield estimation in cotton using UAV-based multi-sensor imagery[J]. Biosystems engineering, 2020, 193: 101-114.
|
2 |
KURTULMUS F, LEE W S, VARDAR A. Green citrus detection using 'eigenfruit', color and circular Gabor texture features under natural outdoor conditions[J]. Computers and electronics in agriculture, 2011, 78(2): 140-149.
|
3 |
QURESHI W S, PAYNE A, WALSH K B, et al. Machine vision for counting fruit on mango tree canopies[J]. Precision agriculture, 2017, 18(2): 224-244.
|
4 |
ZHOU R, DAMEROW L, SUN Y R, et al. Using colour features of cv. 'Gala' apple fruits in an orchard in image processing to predict yield[J]. Precision agriculture, 2012, 13(5): 568-580.
|
5 |
ANNAMALAI P, LEE W S. Citrus yield mapping system using machine vision[C]// 2003, Las Vegas, NV July 27-30, 2003. St. Joseph, MI, USA: American Society of Agricultural and Biological Engineers, 2003: 1.
|
6 |
STAJNKO D, RAKUN J, BLANKE M. Modelling apple fruit yield using image analysis for fruit colour, shape and texture[J]. European journal of horticultural science, 2009, 74(6): 260-267.
|
7 |
DORJ U O, LEE M, YUN S S. An yield estimation in citrus orchards via fruit detection and counting using image processing[J]. Computers and electronics in agriculture, 2017, 140: 103-112.
|
8 |
SA I, GE Z Y, DAYOUB F, et al. DeepFruits: A fruit detection system using deep neural networks[J]. Sensors, 2016, 16(8): ID 1222.
|
9 |
CHEN S W, SHIVAKUMAR S S, DCUNHA S, et al. Counting apples and oranges with deep learning: A data-driven approach[J]. IEEE robotics and automation letters, 2017, 2(2): 781-788.
|
10 |
BARGOTI S, UNDERWOOD J. Deep fruit detection in orchards[C]// 2017 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2017: 3626-3633.
|
11 |
HÄNI N, ROY P, ISLER V. A comparative study of fruit detection and counting methods for yield mapping in apple orchards[J]. Journal of field robotics, 2020, 37(2): 263-282.
|
12 |
李志军, 杨圣慧, 史德帅, 等. 基于轻量化改进YOLOv5的苹果树产量测定方法[J]. 智慧农业(中英文), 2021, 3(2): 100-114.
|
|
LI Z J, YANG S H, SHI D S, et al. Yield estimation method of apple tree based on improved lightweight YOLOv5[J]. Smart agriculture, 2021, 3(2): 100-114.
|
13 |
KESTUR R, MEDURI A, NARASIPURA O. MangoNet: A deep semantic segmentation architecture for a method to detect and count mangoes in an open orchard[J]. Engineering applications of artificial intelligence, 2019, 77: 59-69.
|
14 |
高芳芳, 武振超, 索睿, 等. 基于深度学习与目标跟踪的苹果检测与视频计数方法[J]. 农业工程学报, 2021, 37(21): 217-224.
|
|
GAO F F, WU Z C, SUO R, et al. Apple detection and counting using real-time video based on deep learning and object tracking[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(21): 217-224.
|
15 |
WANG Z L, WALSH K, KOIRALA A. Mango fruit load estimation using a video based MangoYOLO-kalman filter-hungarian algorithm method[J]. Sensors, 2019, 19(12): ID 2742.
|
16 |
LUO W H, XING J L, MILAN A, et al. Multiple object tracking: A literature review[J]. Artificial intelligence, 2021, 293: ID 103448.
|
17 |
RAKAI L, SONG H S, SUN S J, et al. Data association in multiple object tracking: A survey of recent techniques[J]. Expert systems with applications, 2022, 192: ID 116300.
|
18 |
涂淑琴, 汤寅杰, 李承桀, 等. 基于改进ByteTrack算法的群养生猪行为识别与跟踪技术[J]. 农业机械学报, 2022, 53(12): 264-272.
|
|
TU S Q, TANG Y J, LI C J, et al. Behavior recognition and tracking of group-housed pigs based on improved ByteTrack algorithm[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(12): 264-272.
|
19 |
ZHANG Y F, WANG C Y, WANG X G, et al. FairMOT: On the fairness of detection and re-identification in multiple object tracking[J]. International journal of computer vision, 2021, 129(11): 3069-3087.
|
20 |
ZHANG Y F, SUN P Z, JIANG Y, et al. ByteTrack: Multi-object tracking by associating every detection box[C]// European conference on computer vision. Berlin, German: Springer, 2022: 1-21.
|
21 |
吴昊. 基于YOLOX和重识别的行人多目标跟踪方法[J]. 自动化与仪表, 2023, 38(3): 59-62, 67.
|
|
WU H. Pedestrian multi-target tracking method based on YOLOX and person re-identification[J]. Automation & instrumentation, 2023, 38(3): 59-62, 67.
|
22 |
OUYANG W L, WANG X G, ZENG X Y, et al. DeepID-Net: Deformable deep convolutional neural networks for object detection[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2015: 2403-2412.
|
23 |
REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. arXiv: , 2018.
|
24 |
WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, NJ, USA: IEEE, 2020: 1571-1580.
|
25 |
韦锦, 李正强, 许恩永, 等. 基于DA2-YOLOv4算法绿篱识别研究[J]. 中国农机化学报, 2022, 43(9): 122-130.
|
|
WEI J, LI Z Q, XU E Y, et al. Research on hedge recognition based on DA2-YOLOv4 algorithm[J]. Journal of Chinese agricultural mechanization, 2022, 43(9): 122-130.
|
26 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: Scaling cross stage partial network[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2021: 13024-13033.
|
27 |
GÜNEY E, BAYILMIŞ C, ÇAKAN B. An implementation of real-time traffic signs and road objects detection based on mobile GPU platforms[J]. IEEE access, 2022, 10: 86191-86203.
|
28 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 936-944.
|
29 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 8759-8768.
|
30 |
孙泽强, 陈炳才, 崔晓博, 等. 融合频域注意力机制和解耦头的YOLOv5带钢表面缺陷检测[J]. 计算机应用, 2023, 43(1): 242-249.
|
|
SUN Z Q, CHEN B C, CUI X B, et al. Strip steel surface defect detection by YOLOv5 algorithm fusing frequency domain attention mechanism and decoupled head[J]. Journal of computer applications, 2023, 43(1): 242-249.
|