欢迎您访问《智慧农业(中英文)》官方网站! English

Smart Agriculture ›› 2024, Vol. 6 ›› Issue (6): 72-84.doi: 10.12133/j.smartag.SA202408008

• 专题--农业知识智能服务和智慧无人农场(上) • 上一篇    下一篇

基于改进YOLOv8的苗期玉米行检测方法

李洪波1,2(), 田鑫1,2(), 阮志文1,2, 刘少文1,2, 任玮琪1,2, 苏中滨1,2(), 高睿1,2, 孔庆明1,2   

  1. 1. 东北农业大学 电气与信息学院,黑龙江 哈尔滨 150030,中国
    2. 黑龙江省农业农村部东北智慧农业技术重点实验室,黑龙江 哈尔滨 150030,中国
  • 收稿日期:2024-08-13 出版日期:2024-11-30
  • 作者简介:
    田 鑫,研究方向为智能视觉感知。E-mail:
    李洪波和田鑫对本文有同等贡献,并列第一作者。
  • 通信作者:
    李洪波,硕士,助教,研究方向为智能视觉感知。E-mail:
    苏中滨,博士,教授,研究方向为智慧农业。E-mail:

Seedling Stage Corn Line Detection Method Based on Improved YOLOv8

LI Hongbo1,2(), TIAN Xin1,2(), RUAN Zhiwen1,2, LIU Shaowen1,2, REN Weiqi1,2, SU Zhongbin1,2(), GAO Rui1,2, KONG Qingming1,2   

  1. 1. Institutions of Electrical and Information, Northeast Agricultural University, Harbin 150030, China
    2. Key Laboratory of Northeast Smart Agricultural Technology, Ministry of Agriculture and Rural Affairs, Heilongjiang Province, Harbin 150030, China
  • Received:2024-08-13 Online:2024-11-30
  • Foundation items:The National Science and Technology Innovation 2030 of New Generation of Artificial Intelligence Major Project(2021ZD0110904)
  • About author:
    TIAN Xin, E-mail:
    LI Hongbo and TIAN Xin contributed equally to this work
  • Corresponding author:
    LI Hongbo, E-mail: ;
    SU Zhongbin, E-mail:

摘要:

[目的/意义] 智能农机是田间机器人发展的新趋势。作物行提取是智能农机自主作业的重要环节,对于提高田间作业效率、减少作物损害、优化资源利用具有重要意义。然而,在复杂的田间环境中,如强烈的光照和杂草干扰,传统的作物行检测方法往往难以达到高精度和高效率。为了应对这些挑战,本研究旨在提高无人农机在复杂光照和杂草干扰下的苗期玉米行检测精度与效率,从而减少作物损害。 [方法] 提出一种基于YOLOv8-G的作物行检测方法,结合了YOLOv8-G目标检测算法、亲和传播聚类算法,以及最小二乘法。YOLOv8-G是在YOLOv8和GhostNetV2基础上改进的轻量级目标检测算法,通过提取玉米苗的中心点位置,利用亲和传播算法进行聚类分析,并通过最小二乘法拟合作物行。[结果与讨论] YOLOV8-G算法在玉米苗期的7天、14天和21天时的平均准确率(Average Precision, AP)分别为98.22%、98.15%和97.32%。该算法在玉米苗期的作物行提取准确率达到96.52%。相比传统检测方法,YOLOv8-G在处理复杂背景和强光照条件下表现更为优异,且计算效率有一定提升。 [结论] 提出的基于YOLOv8-G的作物行检测方法能够在复杂光照条件和杂草干扰下快速准确地识别田间作物并模拟协同目标行,不仅为无人农机的自动导航提供有力支持,还能高效适配嵌入式设备,在提升农业自动化、减少人工操作和降低作物损害的同时,为智能农机的实时作业提供技术保障,具有重要的应用价值。

关键词: 作物行检测, YOLOv8-G, 主干网络, 亲和传播, 最小二乘法

Abstract:

[Objective] Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field. However, traditional detection methods struggle to maintain high accuracy and efficiency under challenging conditions, such as strong light exposure and weed interference. The aims are to develop an effective crop line extraction method by combining YOLOv8-G, Affinity Propagation, and the Least Squares method to enhance detection accuracy and performance in complex field environments. [Methods] The proposed method employs machine vision techniques to address common field challenges. YOLOv8-G, an improved object detection algorithm that combines YOLOv8 and GhostNetV2 for lightweight, high-speed performance, was used to detect the central points of crops. These points were then clustered using the Affinity Propagation algorithm, followed by the application of the Least Squares method to extract the crop lines. Comparative tests were conducted to evaluate multiple backbone networks within the YOLOv8 framework, and ablation studies were performed to validate the enhancements made in YOLOv8-G. [Results and Discussions] The performance of the proposed method was compared with classical object detection and clustering algorithms. The YOLOv8-G algorithm achieved average precision (AP) values of 98.22%, 98.15%, and 97.32% for corn detection at 7, 14, and 21 days after emergence, respectively. Additionally, the crop line extraction accuracy across all stages was 96.52%. These results demonstrate the model's ability to maintain high detection accuracy despite challenging conditions in the field. [Conclusions] The proposed crop line extraction method effectively addresses field challenges such as lighting and weed interference, enabling rapid and accurate crop identification. This approach supports the automatic navigation of agricultural machinery, offering significant improvements in the precision and efficiency of field operations.

Key words: crop row detection, YOLOv8-G, backbone, affinity propagation, least square method

中图分类号: