| 1 | 
																						 
											  欧阳芳, 王丽娜, 闫卓, 等. 中国农业生态系统昆虫授粉功能量与服务价值评估[J]. 生态学报, 2019, 39(1): 131-145. 
											 											 | 
										
																													
																						 | 
																						 
											   OUYANG F,  WANG L N,  YAN Z, et al. Evaluation of insect pollination and service value in China's agricultural ecosystems[J]. Acta ecologica sinica, 2019, 39(1): 131-145. 
											 											 | 
										
																													
																						| 2 | 
																						 
											  张旭凤, 王锋, 曹嵌, 等. 不同授粉方式下砀山酥梨早期受精生理特性与授粉效果分析[J]. 山西农业科学, 2025, 53(1): 119-128. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHANG X F,  WANG F,  CAO Q, et al. Analysis of physiological characteristics of early fertilization and pollination effects of pear(Pyrus bretschneideri cv. dangshansu) under different pollination methods[J]. Journal of Shanxi agricultural sciences, 2025, 53(1): 119-128. 
											 											 | 
										
																													
																						| 3 | 
																						 
											  朱兴赛, 袁斌, 袁德义, 等. 地熊蜂在油茶园中的访花行为与授粉效果[J]. 昆虫学报, 2025, 68(3): 311-320. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHU X S,  YUAN B,  YUAN D Y, et al. Flower visiting behavior and pollination effect of Bombus terrestris (Hymenoptera: Apidae) in Camellia oleifera plantation[J]. Acta entomologica sinica, 2025, 68(3): 311-320. 
											 											 | 
										
																													
																						| 4 | 
																						 
											   BILIK S,  ZEMCIK T,  KRATOCHVILA L, et al. Machine learning and computer vision techniques in continuous beehive monitoring applications: A survey[J]. Computers and electronics in agriculture, 2024, 217: ID 108560. 
											 											 | 
										
																													
																						| 5 | 
																						 
											  周中奎. 基于机器学习的智能汽车目标检测与场景增强技术研究[D]. 重庆: 重庆邮电大学, 2020. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHOU Z K. Research on machine learning based object detection and augmented reality technology for intelligent vehicle[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2020. 
											 											 | 
										
																													
																						| 6 | 
																						 
											  秦放. 基于深度学习的昆虫图像识别研究[D]. 成都: 西南交通大学, 2018. 
											 											 | 
										
																													
																						 | 
																						 
											   QIN F. Research on insect image recognition based on deep learning[D]. Chengdu: Southwest Jiaotong University, 2018. 
											 											 | 
										
																													
																						| 7 | 
																						 
											   LI W Y,  YANG Z K,  LV J W, et al. Detection of small-sized insects in sticky trapping images using spectral residual model and machine learning[J]. Frontiers in plant science, 2022, 13: ID 915543. 
											 											 | 
										
																													
																						| 8 | 
																						 
											  刘子毅. 基于图谱特征分析的农业虫害检测方法研究[D]. 杭州: 浙江大学, 2017. 
											 											 | 
										
																													
																						 | 
																						 
											   LIU Z Y. Detection of agricultural pest insects based on imaging and spectral feature analysis[D]. Hangzhou: Zhejiang University, 2017. 
											 											 | 
										
																													
																						| 9 | 
																						 
											   YANG H P,  MA C S,  WEN H, et al. A tool for developing an automatic insect identification system based on wing outlines[J]. Scientific reports, 2015, 5: ID 12786. 
											 											 | 
										
																													
																						| 10 | 
																						 
											  杨万里, 段凌凤, 杨万能. 基于深度学习的水稻表型特征提取和穗质量预测研究[J]. 华中农业大学学报, 2021, 40(1): 227-235. 
											 											 | 
										
																													
																						 | 
																						 
											   YANG W L,  DUAN L F,  YANG W N. Deep learning-based extraction of rice phenotypic characteristics and prediction of rice panicle weight[J]. Journal of Huazhong agricultural university, 2021, 40(1): 227-235. 
											 											 | 
										
																													
																						| 11 | 
																						 
											   WANG P,  LUO F,  WANG L H, et al. S-ResNet: An improved ResNet neural model capable of the identification of small insects[J]. Frontiers in plant science, 2022, 13: ID 1066115. 
											 											 | 
										
																													
																						| 12 | 
																						 
											   ZHANG X R,  CHEN G. An automatic insect recognition algorithm in complex background based on convolution neural network[J]. Traitement du signal, 2020, 37(5): 793-798. 
											 											 | 
										
																													
																						| 13 | 
																						 
											   YE R,  GAO Q,  QIAN Y, et al. Improved YOLOv8 and SAHI model for the collaborative detection of small targets at the micro scale: A case study of pest detection in tea[J]. Agronomy, 2024, 14(5): ID 1034. 
											 											 | 
										
																													
																						| 14 | 
																						 
											   YUE G B,  LIU Y Q,  NIU T, et al. GLU-YOLOv8: An improved pest and disease target detection algorithm based on YOLOv8[J]. Forests, 2024, 15(9): ID 1486. 
											 											 | 
										
																													
																						| 15 | 
																						 
											  薛勇, 王立扬, 张瑜, 等. 基于卷积神经网络的蜜蜂采集花粉行为的识别方法[J]. 河南农业科学, 2020, 49(8): 162-172. 
											 											 | 
										
																													
																						 | 
																						 
											   XUE Y,  WANG L Y,  ZHANG Y, et al. Recognition method of bee collecting pollen behavior based on convolutional neural network[J]. Journal of Henan agricultural sciences, 2020, 49(8): 162-172. 
											 											 | 
										
																													
																						| 16 | 
																						 
											  胡玲艳, 孙浩, 徐国辉, 等. 基于机器视觉的温室蓝莓花期蜜蜂授粉监测[J]. 华中农业大学学报, 2023, 42(3): 105-114. 
											 											 | 
										
																													
																						 | 
																						 
											   HU L Y,  SUN H,  XU G H, et al. Machine vision-based monitoring honeybee pollination of blueberry in greenhouse[J]. Journal of Huazhong agricultural university, 2023, 42(3): 105-114. 
											 											 | 
										
																													
																						| 17 | 
																						 
											  孙逸飞, 丁桂玲, 路运才,等. 深度学习在蜜蜂研究中的应用[J]. 环境昆虫学报, 2023, 45(5): 1150-1160. 
											 											 | 
										
																													
																						 | 
																						 
											   SUN Y F,  DING G L,  LU Y C, et al. Application of deep learning in honeybee researches[J]. Journal of Enwironmental entomology, 2023,45(5):1150-1160. 
											 											 | 
										
																													
																						| 18 | 
																						 
											   WANG J X,  LIU M,  DU Y R, et al. PG-YOLO: An efficient detection algorithm for pomegranate before fruit thinning[J]. Engineering applications of artificial intelligence, 2024, 134: ID 108700. 
											 											 | 
										
																													
																						| 19 | 
																						 
											   WANG A,  CHEN H,  LIU L H, et al. YOLOv10: Real-time end-to-end object detection[EB/OL]. arXiv: 2405.14458, 2024. 
											 											 | 
										
																													
																						| 20 | 
																						 
											   NEUBECK A,  VAN GOOL L. Efficient non-maximum suppression[C]// 18th International Conference on Pattern Recognition (ICPR'06). Piscataway, New Jersey, USA: IEEE, 2006: 850-855. 
											 											 | 
										
																													
																						| 21 | 
																						 
											   WANG C Y,  LIAO H Y M,  WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, New Jersey, USA: IEEE, 2020: 390-391. 
											 											 | 
										
																													
																						| 22 | 
																						 
											   XIE Y J,  FEI Z N,  DENG D, et al. MEEAFusion: Multi-scale edge enhancement and joint attention mechanism based infrared and visible image fusion[J]. Sensors, 2024, 24(17): ID 5860. 
											 											 | 
										
																													
																						| 23 | 
																						 
											   CHEN Y F,  ZHANG C Y,  CHEN B, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Computers in biology and medicine, 2024, 170: ID 107917. 
											 											 | 
										
																													
																						| 24 | 
																						 
											   LIN T Y,  DOLLAR P,  GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017: 936-944. 
											 											 | 
										
																													
																						| 25 | 
																						 
											  殷波. 基于改进YOLOv8的轻量化火灾检测算法[J]. 计算机科学与应用, 2024, 14(9): 47-55. 
											 											 | 
										
																													
																						 | 
																						 
											   YIN B. Lightweight fire detection algorithm based on an improved YOLOv8[J]. Computer science and application, 2024, 14(9): 47-55. 
											 											 | 
										
																													
																						| 26 | 
																						 
											   WU Y X,  HE K M,  ORTIZ A, et al. Group normalization[EB/OL]. arXiv: 1803.08494, 2018. 
											 											 | 
										
																													
																						| 27 | 
																						 
											   CHEN Z X,  HE Z W,  LU Z M. DEA-net: Single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE transactions on image processing, 2024, 33: 1002-1015. 
											 											 | 
										
																													
																						| 28 | 
																						 
											   LIN T Y,  GOYAL P,  GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the IEEE International Conference on Computer Vision. Piscataway, New Jersey, USA: IEEE, 2017: 2980-2988. 
											 											 | 
										
																													
																						| 29 | 
																						 
											   WANG J,  YANG W,  GUO H, et al. Tiny object detection in aerial images[C]// 2020 25th International Conference on Pattern Recognition (ICPR). Piscataway, New Jersey, USA: 2021: 3791-3798. 
											 											 | 
										
																													
																						| 30 | 
																						 
											   DRAELOS R L,  CARIN L. Use HiResCAM instead of Grad-CAM for faithful explanations of convolutional neural networks[EB/OL]. arXiv: 2011.08891, 2020. 
											 											 | 
										
																													
																						| 31 | 
																						 
											   SELVARAJU R R,  COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 618-626. 
											 											 |