1 |
欧阳芳, 王丽娜, 闫卓, 等. 中国农业生态系统昆虫授粉功能量与服务价值评估[J]. 生态学报, 2019, 39(1): 131-145.
|
|
OUYANG F, WANG L N, YAN Z, et al. Evaluation of insect pollination and service value in China's agricultural ecosystems[J]. Acta ecologica sinica, 2019, 39(1): 131-145.
|
2 |
张旭凤, 王锋, 曹嵌, 等. 不同授粉方式下砀山酥梨早期受精生理特性与授粉效果分析[J]. 山西农业科学, 2025, 53(1): 119-128.
|
|
ZHANG X F, WANG F, CAO Q, et al. Analysis of physiological characteristics of early fertilization and pollination effects of pear(Pyrus bretschneideri cv. dangshansu) under different pollination methods[J]. Journal of Shanxi agricultural sciences, 2025, 53(1): 119-128.
|
3 |
朱兴赛, 袁斌, 袁德义, 等. 地熊蜂在油茶园中的访花行为与授粉效果[J]. 昆虫学报, 2025, 68(3): 311-320.
|
|
ZHU X S, YUAN B, YUAN D Y, et al. Flower visiting behavior and pollination effect of Bombus terrestris (Hymenoptera: Apidae) in Camellia oleifera plantation[J]. Acta entomologica sinica, 2025, 68(3): 311-320.
|
4 |
BILIK S, ZEMCIK T, KRATOCHVILA L, et al. Machine learning and computer vision techniques in continuous beehive monitoring applications: A survey[J]. Computers and electronics in agriculture, 2024, 217: ID 108560.
|
5 |
周中奎. 基于机器学习的智能汽车目标检测与场景增强技术研究[D]. 重庆: 重庆邮电大学, 2020.
|
|
ZHOU Z K. Research on machine learning based object detection and augmented reality technology for intelligent vehicle[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2020.
|
6 |
秦放. 基于深度学习的昆虫图像识别研究[D]. 成都: 西南交通大学, 2018.
|
|
QIN F. Research on insect image recognition based on deep learning[D]. Chengdu: Southwest Jiaotong University, 2018.
|
7 |
LI W Y, YANG Z K, LV J W, et al. Detection of small-sized insects in sticky trapping images using spectral residual model and machine learning[J]. Frontiers in plant science, 2022, 13: ID 915543.
|
8 |
刘子毅. 基于图谱特征分析的农业虫害检测方法研究[D]. 杭州: 浙江大学, 2017.
|
|
LIU Z Y. Detection of agricultural pest insects based on imaging and spectral feature analysis[D]. Hangzhou: Zhejiang University, 2017.
|
9 |
YANG H P, MA C S, WEN H, et al. A tool for developing an automatic insect identification system based on wing outlines[J]. Scientific reports, 2015, 5: ID 12786.
|
10 |
杨万里, 段凌凤, 杨万能. 基于深度学习的水稻表型特征提取和穗质量预测研究[J]. 华中农业大学学报, 2021, 40(1): 227-235.
|
|
YANG W L, DUAN L F, YANG W N. Deep learning-based extraction of rice phenotypic characteristics and prediction of rice panicle weight[J]. Journal of Huazhong agricultural university, 2021, 40(1): 227-235.
|
11 |
WANG P, LUO F, WANG L H, et al. S-ResNet: An improved ResNet neural model capable of the identification of small insects[J]. Frontiers in plant science, 2022, 13: ID 1066115.
|
12 |
ZHANG X R, CHEN G. An automatic insect recognition algorithm in complex background based on convolution neural network[J]. Traitement du signal, 2020, 37(5): 793-798.
|
13 |
YE R, GAO Q, QIAN Y, et al. Improved YOLOv8 and SAHI model for the collaborative detection of small targets at the micro scale: A case study of pest detection in tea[J]. Agronomy, 2024, 14(5): ID 1034.
|
14 |
YUE G B, LIU Y Q, NIU T, et al. GLU-YOLOv8: An improved pest and disease target detection algorithm based on YOLOv8[J]. Forests, 2024, 15(9): ID 1486.
|
15 |
薛勇, 王立扬, 张瑜, 等. 基于卷积神经网络的蜜蜂采集花粉行为的识别方法[J]. 河南农业科学, 2020, 49(8): 162-172.
|
|
XUE Y, WANG L Y, ZHANG Y, et al. Recognition method of bee collecting pollen behavior based on convolutional neural network[J]. Journal of Henan agricultural sciences, 2020, 49(8): 162-172.
|
16 |
胡玲艳, 孙浩, 徐国辉, 等. 基于机器视觉的温室蓝莓花期蜜蜂授粉监测[J]. 华中农业大学学报, 2023, 42(3): 105-114.
|
|
HU L Y, SUN H, XU G H, et al. Machine vision-based monitoring honeybee pollination of blueberry in greenhouse[J]. Journal of Huazhong agricultural university, 2023, 42(3): 105-114.
|
17 |
孙逸飞, 丁桂玲, 路运才,等. 深度学习在蜜蜂研究中的应用[J]. 环境昆虫学报, 2023, 45(5): 1150-1160.
|
|
SUN Y F, DING G L, LU Y C, et al. Application of deep learning in honeybee researches[J]. Journal of Enwironmental entomology, 2023,45(5):1150-1160.
|
18 |
WANG J X, LIU M, DU Y R, et al. PG-YOLO: An efficient detection algorithm for pomegranate before fruit thinning[J]. Engineering applications of artificial intelligence, 2024, 134: ID 108700.
|
19 |
WANG A, CHEN H, LIU L H, et al. YOLOv10: Real-time end-to-end object detection[EB/OL]. arXiv: 2405.14458, 2024.
|
20 |
NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]// 18th International Conference on Pattern Recognition (ICPR'06). Piscataway, New Jersey, USA: IEEE, 2006: 850-855.
|
21 |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, New Jersey, USA: IEEE, 2020: 390-391.
|
22 |
XIE Y J, FEI Z N, DENG D, et al. MEEAFusion: Multi-scale edge enhancement and joint attention mechanism based infrared and visible image fusion[J]. Sensors, 2024, 24(17): ID 5860.
|
23 |
CHEN Y F, ZHANG C Y, CHEN B, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Computers in biology and medicine, 2024, 170: ID 107917.
|
24 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017: 936-944.
|
25 |
殷波. 基于改进YOLOv8的轻量化火灾检测算法[J]. 计算机科学与应用, 2024, 14(9): 47-55.
|
|
YIN B. Lightweight fire detection algorithm based on an improved YOLOv8[J]. Computer science and application, 2024, 14(9): 47-55.
|
26 |
WU Y X, HE K M, ORTIZ A, et al. Group normalization[EB/OL]. arXiv: 1803.08494, 2018.
|
27 |
CHEN Z X, HE Z W, LU Z M. DEA-net: Single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE transactions on image processing, 2024, 33: 1002-1015.
|
28 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the IEEE International Conference on Computer Vision. Piscataway, New Jersey, USA: IEEE, 2017: 2980-2988.
|
29 |
WANG J, YANG W, GUO H, et al. Tiny object detection in aerial images[C]// 2020 25th International Conference on Pattern Recognition (ICPR). Piscataway, New Jersey, USA: 2021: 3791-3798.
|
30 |
DRAELOS R L, CARIN L. Use HiResCAM instead of Grad-CAM for faithful explanations of convolutional neural networks[EB/OL]. arXiv: 2011.08891, 2020.
|
31 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 618-626.
|