| [1] |
GUO A D, YUE W Z, YANG J, et al. Cropland abandonment in China: Patterns, drivers, and implications for food security[J]. Journal of cleaner production, 2023, 418: ID 138154.
|
| [2] |
NÆSS J S, CAVALETT O, CHERUBINI F. The land–energy–water nexus of global bioenergy potentials from abandoned cropland[J]. Nature sustainability, 2021, 4(6): 525-536.
|
| [3] |
ZHENG Q M, HA T, PRISHCHEPOV A V, et al. The neglected role of abandoned cropland in supporting both food security and climate change mitigation[J]. Nature communications, 2023, 14(1): ID 6083.
|
| [4] |
LI T T, LONG H L, ZHANG Y N, et al. Analysis of the spatial mismatch of grain production and farmland resources in China based on the potential crop rotation system[J]. Land use policy, 2017, 60: 26-36.
|
| [5] |
WANG Y H, YANG A X, YANG Q Y. The extent, drivers and production loss of farmland abandonment in China: Evidence from a spatiotemporal analysis of farm households survey[J]. Journal of cleaner production, 2023, 414: ID 137772.
|
| [6] |
JIANG Y L, HE X K, YIN X G, et al. The pattern of abandoned cropland and its productivity potential in China: A four-years continuous study[J]. Science of the total environment, 2023, 870: ID 161928.
|
| [7] |
邓利梅, 陆传豪, 刘刚才. 川中丘陵区耕地撂荒对土壤肥力的影响[J]. 西南大学学报(自然科学版), 2021, 43(3): 36-44.
|
|
DENG L M, LU C H, LIU G C. Effects of abandonment of cultivated land on soil particle composition and nutrients in hilly areas of central Sichuan[J]. Journal of southwest university (natural science edition), 2021, 43(3): 36-44.
|
| [8] |
杨通, 郭旭东, 于潇, 等. 撂荒地监测方法与生态影响述评[J]. 生态环境学报, 2020, 29(8): 1683-1692.
|
|
YANG T, GUO X D, YU X, et al. Review on monitoring methods and ecological impact of abandoned agricultural land[J]. Ecology and environmental sciences, 2020, 29(8): 1683-1692.
|
| [9] |
LU D, WANG Z P, SU K C, et al. Understanding the impact of cultivated land-use changes on China's grain production potential and policy implications: A perspective of non-agriculturalization, non-grainization, and marginalization[J]. Journal of cleaner production, 2024, 436: ID 140647.
|
| [10] |
LI M D, CUI Y P, DONG J W, et al. Abandoned cropland compensates the decrease in net ecosystem productivity of impervious surface expansion in China[J]. Environmental impact assessment review, 2024, 104: ID 107363.
|
| [11] |
王刚, 廖和平, 温涛. 重庆南川村域耕地撂荒成因及分异机制与调控[J]. 地理学报, 2024, 79(7): 1824-1841.
|
|
WANG G, LIAO H P, WEN T. Causes, differentiation mechanism and regulation of farmland abandonment in villages of Nanchuan district, Chongqing[J]. Acta geographica sinica, 2024, 79(7): 1824-1841.
|
| [12] |
HAN Z, SONG W. Spatiotemporal variations in cropland abandonment in the Guizhou–Guangxi karst mountain area, China[J]. Journal of cleaner production, 2019, 238: ID 117888
|
| [13] |
LONG Y Q, SUN J, WELLENS J, et al. Mapping the spatiotemporal dynamics of cropland abandonment and recultivation across the Yangtze River Basin[J]. Remote sensing, 2024, 16(6): ID 1052.
|
| [14] |
FAO U N. The role of agriculture and rural development in revitalizing abandoned/depopulated areas[R]. 2006.
|
| [15] |
BELL S M, RAYMOND S J, YIN H, et al. Quantifying the recarbonization of post-agricultural landscapes[J]. Nature communications, 2023, 14(1): ID 2139.
|
| [16] |
陈航, 谭永忠, 邓欣雨, 等. 撂荒耕地信息获取方法研究进展与展望[J]. 农业工程学报, 2020, 36(23): 258-268.
|
|
CHEN H, TAN Y Z, DENG X Y, et al. Progress and prospects on information acquisition methods of abandoned farmland[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(23): 258-268.
|
| [17] |
罗雅红, 龚建周, 李天翔, 等. 基于MaxEnt模型提取撂荒耕地: 以四川省武胜县为例[J]. 农业资源与环境学报, 2021, 38(6): 1084-1093.
|
|
LUO Y H, GONG J Z, LI T X, et al. Extraction of abandoned farmland based on MaxEnt model: A case study of Wusheng County, Sichuan Province[J]. Journal of agricultural resources and environment, 2021, 38(6): 1084-1093.
|
| [18] |
杨国永, 许文兴. 耕地抛荒及其治理: 文献述评与研究展望[J]. 中国农业大学学报, 2015, 20(5): 279-288.
|
|
YANG G Y, XU W X. Cultivated land abandoning and its governance: Literature review and research prospective[J]. Journal of China agricultural university, 2015, 20(5): 279-288.
|
| [19] |
李升发, 李秀彬. 中国山区耕地利用边际化表现及其机理[J]. 地理学报, 2018, 73(5): 803-817.
|
|
LI S F, LI X B. Economic characteristics and the mechanism of farmland marginalization in mountainous areas of China[J]. Acta geographica sinica, 2018, 73(5): 803-817.
|
| [20] |
李升发, 李秀彬. 耕地撂荒研究进展与展望[J]. 地理学报, 2016, 71(3): 370-389.
|
|
LI S F, LI X B. Progress and prospect on farmland abandonment[J]. Acta geographica sinica, 2016, 71(3): 370-389.
|
| [21] |
谭术魁. 耕地撂荒程度描述、可持续性评判指标体系及其模式[J]. 中国土地科学, 2003, 17(6): 3-8.
|
|
TAN S K. Extent description and index system of sustainability judgment and its pattern of cultivated land abandoning[J]. China land science, 2003, 17(6): 3-8.
|
| [22] |
HAN Z, SONG W. Abandoned cropland: Patterns and determinants within the Guangxi karst mountainous area, China[J]. Applied geography, 2020, 122: ID 102245.
|
| [23] |
WU Z T, THENKABAIL P S, MUELLER R, et al. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm[J]. Journal of applied remote sensing, 2014, 8: ID 083685.
|
| [24] |
LIU G L, LI Y C, CHEN Y, et al. Mapping abandoned cropland in tropical/subtropical monsoon areas with multiple crop maturity patterns[J]. International journal of applied earth observation and geoinformation, 2024, 127: ID 103674.
|
| [25] |
LUO K S, MOIWO J P. Rapid monitoring of abandoned farmland and information on regulation achievements of government based on remote sensing technology[J]. Environmental science & policy, 2022, 132: 91-100.
|
| [26] |
LIANG Y, LIANG Y W, TU X S. Identification and spatial pattern analysis of abandoned farmland in Jiangxi Province of China based on GF-1 satellite image and object-oriented technology[J]. Frontiers in environmental science, 2024, 12: ID 1423868.
|
| [27] |
张天柱, 张凤荣, 黄敬文, 等. 工业化区域撂荒耕地空间格局演变及影响因素分析[J]. 农业工程学报, 2019, 35(15): 246-255.
|
|
ZHANG T Z, ZHANG F R, HUANG J W, et al. Spatial pattern evolution of abandoned arable land and its influencing factor in industrialized region[J]. Transactions of the Chinese society of agricultural engineering, 2019, 35(15): 246-255.
|
| [28] |
ZHAO Z, WANG J S, WANG L M, et al. Monitoring and analysis of abandoned cropland in the Karst Plateau of eastern Yunnan, China based on Landsat time series images[J]. Ecological indicators, 2023, 146: ID 109828.
|
| [29] |
ZHANG M X, LI G Y, HE T T, et al. Reveal the severe spatial and temporal patterns of abandoned cropland in China over the past 30 years[J]. Science of the total environment, 2023, 857: ID 159591.
|
| [30] |
XU S C, XIAO W, YU C, et al. Mapping cropland abandonment in mountainous areas in China using the google earth engine platform[J]. Remote sensing, 2023, 15(4): ID 1145.
|
| [31] |
HE S, SHAO H Y, XIAN W, et al. Monitoring cropland abandonment in hilly areas with sentinel-1 and sentinel-2 timeseries[J]. Remote sensing, 2022, 14(15): ID 3806.
|
| [32] |
SU W, HU Y M, XUE F Y, et al. Analysis of the spatial distributions and mechanisms influencing abandoned farmland based on high-resolution satellite imagery[J]. Land, 2025, 14(3): ID 501.
|
| [33] |
YI X S, ZHANG Y, HE J, et al. Characteristics and influencing factors of farmland abandonment in the karst rocky desertification area of Southwest China[J]. Ecological indicators, 2024, 160: ID 111802.
|
| [34] |
XIAO W J, WANG J S, LIU Y C. Analysis of spatial-temporal evolution characteristics of abandoned cropland in Yunnan Province based on multitemporal MODIS global land cover product[J]. IOP Conference Series: Earth and Environmental Science, 2019, 346(1): ID 012077.
|
| [35] |
ZHU X F, XIAO G F, ZHANG D J, et al. Mapping abandoned farmland in China using time series MODIS NDVI[J]. Science of the total environment, 2021, 755: ID 142651.
|
| [36] |
HONG C Q, PRISHCHEPOV A V, JIN X B, et al. Mapping cropland abandonment and distinguishing from intentional afforestation with Landsat time series[J]. International journal of applied earth observation and geoinformation, 2024, 127: ID 103693.
|
| [37] |
SHI T C, LI X B, XIN L J, et al. Analysis of farmland abandonment at parcel level: A case study in the mountainous area of China[J]. Sustainability, 2016, 8(10): ID 988.
|
| [38] |
ZHOU Z F, WANG L Y, CHEN Q, et al. Abandoned land identification in karst mountain area based on time series SAR characteristics at geo-parcels scale[J]. Journal of mountain science, 2023, 20(3): 792-809.
|
| [39] |
LI L, PAN Y Z, ZHENG R B, et al. Understanding the spatiotemporal patterns of seasonal, annual, and consecutive farmland abandonment in China with time-series MODIS images during the period 2005–2019[J]. Land degradation & development, 2022, 33(10): 1608-1625.
|
| [40] |
GAO F, ZHANG X Y. Mapping crop phenology in near real-time using satellite remote sensing: Challenges and opportunities[J]. Journal of remote sensing, 2021, 1: 96-109.
|
| [41] |
STOREY J, SCARAMUZZA P, SCHMIDT G, et al. Landsat 7 scan line corrector-off gap-filled product development[EB/OL]. [2025-05-12].
|
| [42] |
CHEN J, ZHU X L, VOGELMANN J E, et al. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images[J]. Remote sensing of environment, 2011, 115(4): 1053-1064.
|
| [43] |
YAN L, ROY D P. Large-area gap filling of landsat reflectance time series by spectral-angle-mapper based spatio-temporal similarity (SAMSTS)[J]. Remote sensing, 2018, 10(4): ID 609.
|
| [44] |
ZHU Z, WOODCOCK C E, HOLDEN C, et al. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time[J]. Remote sensing of environment, 2015, 162: 67-83.
|
| [45] |
VUOLO F, NG W T, ATZBERGER C. Smoothing and gap-filling of high resolution multi-spectral time series: Example of Landsat data[J]. International journal of applied earth observation and geoinformation, 2017, 57: 202-213.
|
| [46] |
ZHU X L, CHEN J, GAO F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote sensing of environment, 2010, 114(11): 2610-2623.
|
| [47] |
RAO Y H, ZHU X L, CHEN J, et al. An improved method for producing high spatial-resolution NDVI time series datasets with multi-temporal MODIS NDVI data and landsat TM/ETM+ images[J]. Remote sensing, 2015, 7(6): 7865-7891.
|
| [48] |
LIU X, DENG C W, WANG S G, et al. Fast and accurate spatiotemporal fusion based upon extreme learning machine[J]. IEEE geoscience and remote sensing letters, 2016, 13(12): 2039-2043.
|
| [49] |
LI X D, FOODY G M, BOYD D S, et al. SFSDAF: An enhanced FSDAF that incorporates sub-pixel class fraction change information for spatio-temporal image fusion[J]. Remote sensing of environment, 2020, 237: ID 111537.
|
| [50] |
GUO D Z, SHI W Z, HAO M, et al. FSDAF 2.0: Improving the performance of retrieving land cover changes and preserving spatial details[J]. Remote sensing of environment, 2020, 248: ID 111973.
|
| [51] |
LUO Y N, GUAN K Y, PENG J. STAIR: A generic and fully-automated method to fuse multiple sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-free surface reflectance product[J]. Remote sensing of environment, 2018, 214: 87-99.
|
| [52] |
WANG S D, CUI D Y, WANG L, et al. Applying deep-learning enhanced fusion methods for improved NDVI reconstruction and long-term vegetation cover study: A case of the Danjiang River Basin[J]. Ecological indicators, 2023, 155: ID 111088.
|
| [53] |
JIANG B, LI X Y, CHONG H Z, et al. A deep-learning reconstruction method for remote sensing images with large thick cloud cover[J]. International journal of applied earth observation and geoinformation, 2022, 115: ID 103079.
|
| [54] |
SEBASTIANELLI A, PUGLISI E, DEL ROSSO M P, et al. PLFM: Pixel-level merging of intermediate feature maps by disentangling and fusing spatial and temporal data for cloud removal[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 1-16.
|
| [55] |
XU F, SHI Y L, EBEL P, et al. GLF-CR: SAR-enhanced cloud removal with global–local fusion[J]. ISPRS journal of photogrammetry and remote sensing, 2022, 192: 268-278.
|
| [56] |
QIU Z H, SHEN H F, YUE L W, et al. Cross-sensor remote sensing imagery super-resolution via an edge-guided attention-based network[J]. ISPRS journal of photogrammetry and remote sensing, 2023, 199: 226-241.
|
| [57] |
LIU H, HUANG B, CAI J J. Thick cloud removal under land cover changes using multisource satellite imagery and a spatiotemporal attention network[J]. IEEE transactions on geoscience and remote sensing, 2023, 61: 1-18.
|
| [58] |
STUCKER C, GARNOT V S F, SCHINDLER K. U-TILISE: A sequence-to-sequence model for cloud removal in optical satellite time series[J]. IEEE transactions on geoscience and remote sensing, 2023, 61: 1-16.
|
| [59] |
温泉, 李璐, 熊立, 等. 基于深度学习的遥感图像水体提取综述[J]. 自然资源遥感, 2024, 36(3): 57-71.
|
|
WEN Q, LI L, XIONG L, et al. A review of water body extraction from remote sensing images based on deep learning[J]. Remote sensing for natural resources, 2024, 36(3): 57-71.
|
| [60] |
WOLTER M, GARCKE J. Adaptive wavelet pooling for convolutional neural networks[C]// Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. New York, USA: PMLR, 2021: 1936-1944.
|
| [61] |
LI H, GHAMISI P, SOERGEL U, et al. Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks[J]. Remote sensing, 2018, 10(10): ID 1649.
|
| [62] |
SHAO Z F, CAI J J. Remote sensing image fusion with deep convolutional neural network[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2018, 11(5): 1656-1669.
|
| [63] |
BENJAMIN K, DOMON G, BOUCHARD A. Vegetation composition and succession of abandoned farmland: Effects of ecological, historical and spatial factors[J]. Landscape ecology, 2005, 20(6): 627-647.
|
| [64] |
LI J W, SHANGGUAN Z P, DENG L. Dynamics of soil microbial metabolic activity during grassland succession after farmland abandonment[J]. Geoderma, 2020, 363: ID 114167.
|
| [65] |
万军. 贵州省喀斯特地区土地退化与生态重建研究进展[J]. 地球科学进展, 2003, 18(3): 447-453.
|
|
WAN J. Land degradation and ecological rehabilitation in karst areas of Guizhou province, southweastern China[J]. Advance in earth sciences, 2003, 18(3): 447-453.
|
| [66] |
祝小科, 朱守谦. 喀斯特石质山地封山育林效果分析[J]. 林业科技, 2001, 26(6): 1-4.
|
|
ZHU X K, ZHU S Q. Analysis on closing hillsides to facilitate afforestation in karst hills[J]. Forestry science and technology, 2001, 26(6): 1-4.
|
| [67] |
陈宁强, 戴锦芳. 人机交互式土地资源遥感解译方法研究[J]. 遥感技术与应用, 1998, 13(2): 15-20.
|
|
CHEN N Q, DAI J F. Method research on man machine interactive interpreting and analysing of the land resource by using remote sensing[J]. Remote sensing technology and application, 1998, 13(2): 15-20.
|
| [68] |
李阳兵, 罗光杰, 黄娟. 茂兰喀斯特自然保护区撂荒地时空演变、机制及其植被恢复[J]. 中国岩溶, 2017, 36(4): 447-453.
|
|
LI Y B, LUO G J, HUANG J. Spatial-temporal evolution, mechanism and vegetation restoration of abandoned farmland in the Maolan national nature reserve[J]. Carsologica sinica, 2017, 36(4): 447-453.
|
| [69] |
郑财贵, 邱道持, 叶公强, 等. 基于GIS空间分析的撂荒地空间分布特征研究: 以重庆市璧山县大路镇为例[J]. 农机化研究, 2010, 32(3): 31-36.
|
|
ZHENG C G, QIU D C, YE G Q, et al. Study on spatial distribution characteristics of abandoned cropland based on spatial analysis of GIS: A case of dalu Town Bishan count in Chongqing municipality[J]. Journal of agricultural mechanization research, 2010, 32(3): 31-36.
|
| [70] |
程宪波, 高根红, 刘琼, 等. 快速城镇化地区的耕地撂荒空间格局、影响机理与治理路径[J]. 农业工程学报, 2022, 38(24): 218-227.
|
|
CHENG X B, GAO G H, LIU Q, et al. Spatial pattern, causal mechanisms and governance strategies of cultivated land abandonment in rapidly urbanizing areas[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(24): 218-227.
|
| [71] |
李雨凌, 马雯秋, 姜广辉, 等. 中国粮食主产区耕地撂荒程度及其对粮食产量的影响[J]. 自然资源学报, 2021, 36(6): 1439-1454.
|
|
LI Y L, MA W Q, JIANG G H, et al. The degree of cultivated land abandonment and its influence on grain yield in main grain producing areas of China[J]. Journal of natural resources, 2021, 36(6): 1439-1454.
|
| [72] |
林妙萍, 杨颖频, 吴志峰, 等. 基于M-TWDTW模型的粤北山区耕地撂荒遥感监测研究[J]. 地理空间信息, 2023, 21(12): 29-34.
|
|
LIN M P, YANG Y P, WU Z F, et al. Remote sensing monitoring of Uncultivated Land in mountain areas of northern Guangdong based on M-TWDTW model[J]. Geospatial information, 2023, 21(12): 29-34.
|
| [73] |
王圆圆, 李京. 遥感影像土地利用/覆盖分类方法研究综述[J]. 遥感信息, 2004, 19(1): 53-59.
|
|
WANG Y Y, LI J. Classification methods of land use/cover based on remote sensing technology[J]. Remote sensing information, 2004, 19(1): 53-59.
|
| [74] |
SONG W. Mapping cropland abandonment in mountainous areas using an annual land-use trajectory approach[J]. Sustainability, 2019, 11(21): ID 5951.
|
| [75] |
CHEN Y F, WANG Y K, FU B, et al. Spatial patterns of farmland abandonment and its impact factors in the central Three Gorges Reservoir Area[J]. Journal of mountain science, 2018, 15(3): 631-644.
|
| [76] |
HUSSAIN M, CHEN D M, CHENG A, et al. Change detection from remotely sensed images: From pixel-based to object-based approaches[J]. ISPRS journal of photogrammetry and remote sensing, 2013, 80: 91-106.
|
| [77] |
TONG X Y, BRANDT M, HIERNAUX P, et al. The forgotten land use class: Mapping of fallow fields across the Sahel using Sentinel-2[J]. Remote sensing of environment, 2020, 239: ID 111598.
|
| [78] |
CHEN J G, ZHAO W Z, CHEN X. Cropland change detection with harmonic function and generative adversarial network[J]. IEEE geoscience and remote sensing letters, 2022, 19: 1-5.
|
| [79] |
ZHANG T T, YANG J Y, ZHOU H, et al. Abandoned cropland mapping with phenology-enhanced change vector analysis and semi-supervised learning in different cropping intensity areas[J]. IEEE transactions on geoscience and remote sensing, 2024, 62: 1-15.
|
| [80] |
KENNEDY R E, YANG Z Q, COHEN W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr: Temporal segmentation algorithms[J]. Remote sensing of environment, 2010, 114(12): 2897-2910.
|
| [81] |
WU J Y, JIN S F, ZHU G L, et al. Monitoring of cropland abandonment based on long time series remote sensing data: A case study of Fujian Province, China[J]. Agronomy, 2023, 13(6): ID 1585.
|
| [82] |
范德芹, 赵学胜, 朱文泉, 等. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016, 35(3): 304-319.
|
|
FAN D Q, ZHAO X S, ZHU W Q, et al. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data[J]. Progress in geography, 2016, 35(3): 304-319.
|
| [83] |
SU Y Y, WU S K, KANG S G, et al. Monitoring cropland abandonment in Southern China from 1992 to 2020 based on the combination of phenological and time-series algorithm using landsat imagery and google earth engine[J]. Remote sensing, 2023, 15(3): ID 669.
|
| [84] |
YIN H, PRISHCHEPOV A V, KUEMMERLE T, et al. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series[J]. Remote sensing of environment, 2018, 210: 12-24.
|
| [85] |
TAMIMINIA H, SALEHI B, MAHDIANPARI M, et al. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review[J]. ISPRS journal of photogrammetry and remote sensing, 2020, 164: 152-170.
|
| [86] |
HE S, SHAO H Y, XIAN W, et al. Extraction of abandoned land in hilly areas based on the spatio-temporal fusion of multi-source remote sensing images[J]. Remote sensing, 2021, 13(19): ID 3956.
|
| [87] |
HONG C Q, PRISHCHEPOV A V, JIN X B, et al. The role of harmonized Landsat Sentinel-2 (HLS) products to reveal multiple trajectories and determinants of cropland abandonment in subtropical mountainous areas[J]. Journal of environmental management, 2023, 336: ID 117621.
|
| [88] |
宋宪强, 梁钊雄, 周红艺, 等. 基于决策树与时序NDVI变化检测的耕地撂荒遥感监测: 以四川省凉山州普格县为例[J]. 山地学报, 2021, 39(6): 912-921.
|
|
SONG X Q, LIANG Z X, ZHOU H Y, et al. An updated method to monitor the changes in spatial distribution of abandoned land based on decision tree and time series NDVI change detection: A case study of Puge County, Liangshan prefecture, Sichuan Province, China[J]. Mountain research, 2021, 39(6): 912-921.
|
| [89] |
WANG S H, LIU H. Deep learning for feature representation[M]//Feature Engineering for Machine Learning and Data Analytics. Boca Raton: CRC Press, 2018: 279-307.
|
| [90] |
YANG Y P, WU Z F, XIAO W J, et al. Abandoned land mapping based on spatiotemporal features from PolSAR data via deep learning methods[J]. Remote sensing, 2023, 15(16): ID 3942.
|
| [91] |
王佑汉, 李谦, 曾琨. 基于分形理论的撂荒耕地和未撂荒耕地空间分布研究[J]. 中国农业信息, 2020, 32(2): 56-64.
|
|
WANG Y H, LI Q, ZENG K. Study on the spatial distribution of abandoned farmland and unabandoned farmland based on fractal theory[J]. China agricultural informatics, 2020, 32(2): 56-64.
|
| [92] |
陶建斌, 王昀, 张馨月, 等. 基于物候信息图谱的耕地种植模式遥感监测方法[J]. 中国农业科学, 2024, 57(4): 663-678.
|
|
TAO J B, WANG Y, ZHANG X Y, et al. Remote sensing monitoring of cropping patterns based on phenology information atlas[J]. Scientia agricultura sinica, 2024, 57(4): 663-678.
|
|
[9391] YIN H, BRANDÃO A, BUCHNER J, et al. Monitoring cropland abandonment with Landsat time series[J]. Remote sensing of environment, 2020, 246: ID 111873.
|
| [94] |
夏玉松, 周启刚, 李辉, 等. 基于决策树与NDVI时序变化检测的撂荒耕地的地形特征研究: 以重庆市巫山县为例[J]. 水土保持通报, 2024, 44(4): 383-393.
|
|
XIA Y S, ZHOU Q G, LI H, et al. Topographic characteristics of abandoned farmland based on decision tree and NDVI time series change detection: A case study in Wushan County of Chongqing City[J]. Bulletin of soil and water conservation, 2024, 44(4): 383-393.
|
| [95] |
WEI Y L, WEN J J, ZHOU Q C, et al. Mapping cropland abandonment in the cloudy hilly regions surrounding the southwest basin of China[J]. Land, 2024, 13(5): ID 586.
|
| [96] |
郝心怡, 张江, 白瑞, 等. 长江中下游地区耕地复种指数时空特征及驱动机制研究[J]. 国土资源科技管理, 2021, 38(4): 15-27.
|
|
HAO X Y, ZHANG J, BAI R, et al. Spatial and temporal characteristics and driving mechanism of multiple cropping index of cultivated land in the middle and lower reaches of the Yangtze River[J]. Scientific and technological management of land and resources, 2021, 38(4): 15-27.
|
| [97] |
张闯娟, 何洪鸣. 西南地区耕地复种指数的时空格局演变及影响因素[J]. 干旱地区农业研究, 2020, 38(3): 222-230.
|
|
ZHANG C J, HE H M. The evolution of spatiotemporal patterns and the influencing factors of the multiple cropping index of cultivated land in Southwest China[J]. Agricultural research in the arid areas, 2020, 38(3): 222-230.
|
| [98] |
WANG R J, LI X B, TAN M H, et al. Inter-provincial differences in rice multi-cropping changes in main double-cropping rice area in China: Evidence from provinces and households[J]. Chinese geographical science, 2019, 29(1): 127-138.
|
| [99] |
辛良杰, 李秀彬. 近年来我国南方双季稻区复种的变化及其政策启示[J]. 自然资源学报, 2009, 24(1): 58-65.
|
|
XIN L J, LI X B. Changes of multiple cropping in double cropping rice area of Southern China and its policy implications[J]. Journal of natural resources, 2009, 24(1): 58-65.
|
| [100] |
YU Q Y, XIANG M T, SUN Z L, et al. The complexity of measuring cropland use intensity: An empirical study[J]. Agricultural systems, 2021, 192: ID 103180.
|
| [101] |
冀咏赞, 闫慧敏, 刘纪远, 等. 基于MODIS数据的中国耕地高中低产田空间分布格局[J]. 地理学报, 2015, 70(5): 766-778.
|
|
JI Y Z, YAN H M, LIU J Y, et al. A MODIS data derived spatial distribution of high-, mediumand low-yield cropland in China[J]. Acta geographica sinica, 2015, 70(5): 766-778.
|
| [102] |
龙禹桥, 吴文斌, 余强毅, 等. 耕地集约化利用研究进展评述[J]. 自然资源学报, 2018, 33(2): 337-350.
|
|
LONG Y Q, WU W B, YU Q Y, et al. Recent study progresses in intensive use of cropland[J]. Journal of natural resources, 2018, 33(2): 337-350.
|
| [103] |
CHEN H, TAN Y Z, XIAO W, et al. Assessment of continuity and efficiency of complemented cropland use in China for the past 20 years: A perspective of cropland abandonment[J]. Journal of cleaner production, 2023, 388: ID 135987.
|
| [104] |
张斌, 徐邓耀, 翟有龙, 等. 耕地抛荒的定量化评价方法[J]. 贵州农业科学, 2003, 31(5): 43-44.
|
|
ZHANG B, XU D Y, ZHAI Y L, et al. The evaluation indexes and its applications of disused arable lands[J]. Guizhou agricultural sciences, 2003, 31(5): 43-44.
|
| [105] |
欧阳许童, 张璇, 李维庆, 等. 基于Sentinel-2和Landsat卫星时序数据的耕地撂荒识别[J]. 测绘通报, 2023(8): 57-62.
|
|
OUYANG X T, ZHANG X, LI W Q, et al. Abandoned land identification based on Sentinel-2 and Landsat satellite time series images[J]. Bulletin of surveying and mapping, 2023(8): 57-62.
|
| [106] |
HONG C Q, PRISHCHEPOV A V, BAVOROVA M. Cropland abandonment in mountainous China: Patterns and determinants at multiple scales and policy implications[J]. Land use policy, 2024, 145: ID 107292.
|
| [107] |
STEHMAN S V. Sampling designs for accuracy assessment of land cover[J]. International journal of remote sensing, 2009, 30(20): 5243-5272.
|
| [108] |
HUANG D M, XU S J, SUN J Q, et al. Accuracy assessment model for classification result of remote sensing image based on spatial sampling[J]. Journal of applied remote sensing, 2017, 11(4): ID 046023.
|
| [109] |
HADDAWAY N R, STYLES D, PULLIN A S. Environmental impacts of farm land abandonment in high altitude/mountain regions: A systematic map of the evidence[J]. Environmental evidence, 2013, 2(1): ID 18.
|
| [110] |
肖文菊, 杨颖频, 吴志峰, 等. 基于时序遥感的撂荒地监测及空间格局特征分析[J]. 热带地理, 2024, 44(3): 547-556.
|
|
XIAO W J, YANG Y P, WU Z F, et al. Abandoned land identification and spatial pattern analysis based on time-series remote sensing[J]. Tropical geography, 2024, 44(3): 547-556.
|
| [111] |
ZHANG X Y, LIU L L, HENEBRY G M. Impacts of land cover and land use change on long-term trend of land surface phenology: A case study in agricultural ecosystems[J]. Environmental research letters, 2019, 14(4): ID 044020.
|
| [112] |
LV X H, TANG Q, HAN C, et al. Farmland abandonment and vegetation succession mediate soil properties but are determined by the duration of conversion[J]. Catena, 2024, 238: ID 107877.
|
| [113] |
QUEIROZ C, BEILIN R, FOLKE C, et al. Farmland abandonment: Threat or opportunity for biodiversity conservation? A global review[J]. Frontiers in ecology and the environment, 2014, 12(5): 288-296.
|
| [114] |
WANG Y H, YANG A X, SHEN W H, et al. Spatial patterns, determinants, future trends, and implications for the sustainable use of terraces abandonment in China[J]. Journal of cleaner production, 2024, 467: ID 142860.
|
| [115] |
KONG L Q, WU T, XIAO Y, et al. Natural capital investments in China undermined by reclamation for cropland[J]. Nature ecology & evolution, 2023, 7(11): 1771-1777.
|
| [116] |
XIE Z, FAN S L, DU S R, et al. Mechanism, risk, and solution of cultivated land reversion to mountains and abandonment in China[J]. Frontiers in environmental science, 2023, 11: ID 1120734.
|
| [117] |
CASTILLO C P, KAVALOV B, DIOGO V, et al. Agricultural land abandonment in the EU within 2015-2030 [R] Joint Research Centre (Seville site), 2018.
|
| [118] |
吴文斌, 龙禹桥, 余强毅, 等. 中国耕地集约化与规模化利用耦合特征分析[J]. 中国农业资源与区划, 2020, 41(3): 12-19.
|
|
WU W B, LONG Y Q, YU Q Y, et al. Coupling characteristics between cropland intensification and large-scale utilization in China[J]. Chinese journal of agricultural resources and regional planning, 2020, 41(3): 12-19.
|
| [119] |
苏康传, 杨庆媛, 张忠训, 等. 中国耕地差异化休耕模式及技术措施探讨[J]. 农业工程学报, 2020, 36(9): 283-291.
|
|
SU K C, YANG Q Y, ZHANG Z X, et al. Investigation of differential fallow patterns and technical measures for cultivated land in China[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(9): 283-291.
|
| [120] |
CAMPBELL J E, LOBELL D B, GENOVA R C, et al. The global potential of bioenergy on abandoned agriculture lands[J]. Environmental science & technology, 2008, 42(15): 5791-5794.
|
| [121] |
PAUSTIAN K, LEHMANN J, OGLE S, et al. Climate-smart soils[J]. Nature, 2016, 532(7597): 49-57.
|
| [122] |
YANG Y, HOBBIE S E, HERNANDEZ R R, et al. Restoring abandoned farmland to mitigate climate change on a full earth[J]. One earth, 2020, 3(2): 176-186.
|
| [123] |
YANG Y, TILMAN D, FUREY G, et al. Soil carbon sequestration accelerated by restoration of grassland biodiversity[J]. Nature communications, 2019, 10(1): ID 718.
|
| [124] |
ISBELL F, TILMAN D, REICH P B, et al. Deficits of biodiversity and productivity linger a century after agricultural abandonment[J]. Nature ecology & evolution, 2019, 3(11): 1533-1538.
|
| [125] |
HUA F Y, WANG X Y, ZHENG X L, et al. Opportunities for biodiversity gains under the world's largest reforestation programme[J]. Nature communications, 2016, 7: ID 12717.
|
| [126] |
HAN WENG Z, VAN ZWIETEN L, SINGH B P, et al. Biochar built soil carbon over a decade by stabilizing rhizodeposits[J]. Nature climate change, 2017, 7(5): 371-376.
|
| [127] |
FARGIONE J E, BASSETT S, BOUCHER T, et al. Natural climate solutions for the United States[J]. Science advances, 2018, 4(11): ID eaat1869.
|
| [128] |
龙禹桥, 许伟强, 蔡剑, 等. 智慧农险关键技术及应用分析[J]. 中国农业信息, 2019, 31(6): 93-106.
|
|
LONG Y Q, XU W Q, CAI J, et al. Key technology and application analysis of smart agricultural insurance[J]. China agricultural informatics, 2019, 31(6): 93-106.
|
| [129] |
DAX T, SCHROLL K, MACHOLD I, et al. Land abandonment in mountain areas of the EU: An inevitable side effect of farming modernization and neglected threat to sustainable land use[J]. Land, 2021, 10(6): ID 591.
|
| [130] |
GEIST H J, LAMBIN E F. Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations[J]. BioScience, 2002, 52(2): 143-150.
|
| [131] |
PERPIÑA CASTILLO C, COLL ALIAGA E, LAVALLE C, et al. An assessment and spatial modelling of agricultural land abandonment in Spain (2015–2030)[J]. Sustainability, 2020, 12(2): ID 560.
|
| [132] |
FAYET C M J, VERBURG P H. Modelling opportunities of potential European abandoned farmland to contribute to environmental policy targets[J]. Catena, 2023, 232: ID 107460.
|