| [1] |
丁世春, 马瑞峻, 陈瑜. 基于高光谱成像的水果品质检测研究进展[J]. 江苏农业科学, 2024, 52(15): 16-26.
|
|
DING S C, MA R J, CHEN Y. Research progress on fruit quality detection based on hyperspectral imaging[J]. Jiangsu Agricultural sciences, 2024, 52(15): 16-26.
|
| [2] |
WANG B, YANG H, LI L L, et al. Non-destructive detection of Cerasus humilis fruit quality by hyperspectral imaging combined with chemometric method[J]. Horticulturae, 2024, 10(5): ID 519.
|
| [3] |
谭涛, 冯树南, 温青纯, 等. 高光谱成像技术在水果品质检测中的应用研究进展[J]. 江苏农业科学, 2024, 52(6): 11-18.
|
|
TAN T, FENG S N, WEN Q C, et al. Research progress on application of hyperspectral imaging technology in detection of fruit quality[J]. Jiangsu Agricultural sciences, 2024, 52(6): 11-18.
|
| [4] |
郭志明, 桑伟兴, 杨忱, 等. 近红外光谱及成像在果品无损检测中的应用[J]. 包装与食品机械, 2024, 42(5): 1-14.
|
|
GUO Z M, SANG W X, YANG C, et al. Application of nondestructive detection of fruit by near-infrared spectroscopy and imaging[J]. Packaging and Food machinery, 2024, 42(5): 1-14.
|
| [5] |
PATEL D, BHISE S, KAPDI S S, et al. Non-destructive hyperspectral imaging technology to assess the quality and safety of food: A review[J]. Food production, processing and nutrition, 2024, 6(1): ID 69.
|
| [6] |
CHEN C M. Science mapping: A systematic review of the literature[J]. Journal of data and information science, 2017, 2(2): 1-40.
|
| [7] |
CHEN C M, SONG M. Visualizing a field of research: A methodology of systematic scientometric reviews[J]. PLoS one, 2019, 14(10): ID e0223994.
|
| [8] |
ZHANG J L, QUOQUAB F, MOHAMMAD J. Plastic and sustainability: A bibliometric analysis using VOSviewer and CiteSpace[J]. Arab gulf journal of scientific research, 2024, 42(1): 44-67.
|
| [9] |
YEUNG A W K. Bibliometric analysis on the literature of monk fruit extract and mogrosides as sweeteners[J]. Frontiers in nutrition, 2023, 10: ID 1253255.
|
| [10] |
GONG Z A, ZHI Z H, ZHANG C L, et al. Non-destructive detection of soluble solids content in fruits: A review[J]. Chemistry, 2025, 7(4): ID 115.
|
| [11] |
AMORIELLO T, CIORBA R, RUGGIERO G, et al. Vis/NIR spectroscopy and vis/NIR hyperspectral imaging for non-destructive monitoring of apricot fruit internal quality with machine learning[J]. Foods, 2025, 14(2): ID 196.
|
| [12] |
LIU J Y, SUN J, WANG Y S, et al. Non-destructive detection of fruit quality: Technologies, applications and prospects[J]. Foods, 2025, 14(12): ID 2137.
|
| [13] |
CHENG M F, MUKUNDAN A, KARMAKAR R, et al. Modern trends and recent applications of hyperspectral imaging: A review[J]. Technologies, 2025, 13(5): ID 170.
|
| [14] |
WAN G L, HE J G, MENG X H, et al. Hyperspectral imaging technology for nondestructive identification of quality deterioration in fruits and vegetables: A review[J]. Critical reviews in food science and nutrition, 2025: 1-30.
|
| [15] |
VIGNATI S, TUGNOLO A, GIOVENZANA V, et al. Hyperspectral imaging for fresh-cut fruit and vegetable quality assessment: Basic concepts and applications[J]. Applied sciences, 2023, 13(17): ID 9740.
|
| [16] |
LAN W J, HUI X, NICOLAÏ B, et al. Visualizing the structural and chemical heterogeneity of fruit and vegetables using advanced imaging techniques: Fundamentals, instrumental aspects, applications and future perspectives[J]. Critical reviews in food science and nutrition, 2025, 65(21): 4147-4171.
|
| [17] |
KIM G, LEE H, CHO B K, et al. Quantitative evaluation of food-waste components in organic fertilizer using visible–near-infrared hyperspectral imaging[J]. Applied sciences, 2021, 11(17): ID 8201.
|
| [18] |
ALTIERI G, LAVEGLIA S, RASHVAND M, et al. Portable NIR spectroscopy combined with machine learning for kiwi ripeness classification: An approach to precision farming[J]. Applied sciences, 2025, 15(11): ID 6233.
|
| [19] |
SHAO Y Y, WANG Y X, XUAN G T. In-field and non-invasive determination of internal quality and ripeness stages of Feicheng peach using a portable hyperspectral imager[J]. Biosystems engineering, 2021, 212: 115-125.
|
| [20] |
谢宇彤, 牟涛涛, 陈少华. 高光谱成像技术在精准农业领域的应用方法综述[J]. 传感器世界, 2025, 31(1): 1-10.
|
|
XIE Y T, MU T T, CHEN S H. A review of the application methods of hyperspectral technology in precision agriculture[J]. Sensor world, 2025, 31(1): 1-10.
|
| [21] |
XU S, WANG H T, LIANG X, et al. Research progress on methods for improving the stability of non-destructive testing of agricultural product quality[J]. Foods, 2024, 13(23): ID 3917.
|
| [22] |
SABOURI A, BAKHSHIPOUR A, POORSALEHI M, et al. Machine learning techniques for non-destructive estimation of plum fruit weight[J]. Scientific reports, 2025, 15: ID 751.
|
| [23] |
ZHOU C L, YU Y S, AI J Y, et al. Fruit wines classification enabled by combing machine learning with comprehensive volatiles profiles of GC-TOF/MS and GC-IMS[J]. Food research international, 2025, 204: ID 115890.
|
| [24] |
OH H, MENGIST M F, MA G Y, et al. Unraveling the genetic architecture of blueberry fruit quality traits: Major loci control organic acid content while more complex genetic mechanisms control texture and sugar content[J]. BMC plant biology, 2025, 25(1): ID 36.
|
| [25] |
GU Y Q, WU J H, GUO Y J, et al. Grade classification of Camellia seed oil based on hyperspectral imaging technology[J]. Foods, 2024, 13(20): ID 3331.
|
| [26] |
KHAKI S, WANG L Z, ARCHONTOULIS S V. A CNN-RNN framework for crop yield prediction[J]. Frontiers in plant science, 2019, 10: ID 1750.
|
| [27] |
JOSHI A, PRADHAN B, CHAKRABORTY S, et al. An explainable Bi-LSTM model for winter wheat yield prediction[J]. Frontiers in plant science, 2024, 15: ID 1491493.
|
| [28] |
CHUN S W, SONG D J, LEE K H, et al. Deep learning algorithm development for early detection of Botrytis cinerea infected strawberry fruit using hyperspectral fluorescence imaging[J]. Postharvest biology and technology, 2024, 214: ID 112918.
|
| [29] |
OLISAH C C, TREWHELLA B, LI B, et al. Convolutional neural network ensemble learning for hyperspectral imaging-based blackberry fruit ripeness detection in uncontrolled farm environment[J]. Engineering applications of artificial intelligence, 2024, 132: ID 107945.
|
| [30] |
ZHAO Y Y, ZHOU L, WANG W, et al. Visible/near-infrared spectroscopy and hyperspectral imaging facilitate the rapid determination of soluble solids content in fruits[J]. Food engineering reviews, 2024, 16(3): 470-496.
|
| [31] |
WENG S Z, YU S, GUO B Q, et al. Non-destructive detection of strawberry quality using multi-features of hyperspectral imaging and multivariate methods[J]. Sensors, 2020, 20(11): ID 3074.
|
| [32] |
GAO S, XU J H. Hyperspectral image information fusion-based detection of soluble solids content in red globe grapes[J]. Computers and electronics in agriculture, 2022, 196: ID 106822.
|
| [33] |
HASANZADEH B, ABBASPOUR-GILANDEH Y, SOLTANI-NAZARLOO A, et al. Non-destructive detection of fruit quality parameters using hyperspectral imaging, multiple regression analysis and artificial intelligence[J]. Horticulturae, 2022, 8(7): ID 598.
|
| [34] |
KIM M J, YU W H, SONG D J, et al. Prediction of soluble-solid content in Citrus fruit using visible–near-infrared hyperspectral imaging based on effective-wavelength selection algorithm[J]. Sensors, 2024, 24(5): ID 1512.
|
| [35] |
MENG Q L, TAN T, FENG S N, et al. Prediction and visualization map for physicochemical indices of kiwifruits by hyperspectral imaging[J]. Frontiers in nutrition, 2024, 11: ID 1364274.
|
| [36] |
XIAO Y X, ZHAI Y N, ZHOU L, et al. Detection of soluble solid content in Citrus fruits using hyperspectral imaging with machine and deep learning: A comparative study of two Citrus cultivars[J]. Foods, 2025, 14(12): ID 2091.
|
| [37] |
GAO W J, CHENG X, LIU X H, et al. Apple firmness detection method based on hyperspectral technology[J]. Food control, 2024, 166: ID 110690.
|
| [38] |
WANG Q, LU J Z, WANG Y H, et al. In situ nondestructive identification of Citrus fruit ripeness via hyperspectral imaging technology[J]. Plant methods, 2025, 21(1): ID 77.
|
| [39] |
DAI C X, SUN J, HUANG X Y, et al. Application of hyperspectral imaging as a nondestructive technology for identifying tomato maturity and quantitatively predicting lycopene content[J]. Foods, 2023, 12(15): ID 2957.
|
| [40] |
Siripatrawan U, Makino Y. Hyperspectral imaging coupled with machine learning for classification of anthracnose infection on mango fruit[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2024, 309: 123825.
|
| [41] |
ZHU H Y, QIN S, LIANG S K, et al. Hyperspectral imaging and machine learning for quality assessment of apples with different bagging types[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2025, 343: ID 126443.
|
| [42] |
LI B C, HOU B L, ZHANG D W, et al. Pears characteristics (soluble solids content and firmness prediction, varieties) testing methods based on visible-near infrared hyperspectral imaging[J]. Optik, 2016, 127(5): 2624-2630.
|
| [43] |
FENG R Z, HAN X, LAN Y B, et al. Detection of early subtle bruising in strawberries using VNIR hyperspectral imaging and deep learning[J]. Vibrational spectroscopy, 2025, 138: ID 103786.
|
| [44] |
Qi H, Li H, Chen L, et al. Hyperspectral imaging using a convolutional neural network with transformer for the soluble solid content and pH prediction of cherry tomatoes[J]. Foods, 2024, 13(2): ID 251.
|
| [45] |
LIU J L, MENG H B. Research on the maturity detection method of Korla pears based on hyperspectral technology[J]. Agriculture, 2024, 14(8): ID 1257.
|
| [46] |
MENG Q L, FENG S N, TAN T, et al. Application of hyperspectral imaging and chemometrics for determining quality and maturity of loquats[J]. Journal of food safety, 2024, 44(4): ID e13159.
|
| [47] |
ANJALI, JENA A, BAMOLA A, et al. State-of-the-art non-destructive approaches for maturity index determination in fruits and vegetables: Principles, applications, and future directions[J]. Food production, processing and nutrition, 2024, 6(1): ID 56.
|
| [48] |
LIU Y F, ZHANG Z, FU Y, et al. Assessment of apple soluble sugar content by hyperspectral vegetation indexes[J]. Spectroscopy letters, 2024, 57(8): 443-451.
|
| [49] |
白大昱, 史庆华, 王建全, 等. 基于高光谱特征提取的甜瓜白粉病早期识别[J]. 中国农机化学报, 2024, 45(11): 172-177.
|
|
BAI D Y, SHI Q H, WANG J Q, et al. Early identification of melon powdery mildew based on hyperspectral feature extraction[J]. Journal of Chinese agricultural mechanization, 2024, 45(11): 172-177.
|
| [50] |
FAQEERZADA M A, KIM Y N, KIM H, et al. Hyperspectral imaging system for pre- and post-harvest defect detection in paprika fruit[J]. Postharvest biology and technology, 2024, 218: ID 113151.
|
| [51] |
Yu X, Ning H X, Zhang W, et al. Nondestructive determination of soluble solids content in apples using self-designed portable visible/near-infrared diffuse transmittance spectrometer combined with feature wavelength selection algorithms[J]. Journal of food composition and analysis, 2025,148: ID 108470.
|
| [52] |
MA J, LI M J, FAN W P, et al. State-of-the-art techniques for fruit maturity detection[J]. Agronomy, 2024, 14(12): ID 2783.
|
| [53] |
吴虹璋, 蔡红星, 任玉, 等. 基于可见/近红外光谱对葡萄可溶性固形物无损检测研究[J]. 光散射学报, 2024, 36(1): 44-51.
|
|
WU H Z, CAI H X, REN Y, et al. Non-destructive detection of soluble solid content based on visible-near infrared spectroscopy[J]. The journal of light scattering, 2024, 36(1): 44-51.
|
| [54] |
PANSY D L, MURALI M. UAV hyperspectral remote sensor images for mango plant disease and pest identification using MD-FCM and XCS-RBFNN[J]. Environmental monitoring and assessment, 2023, 195(9): ID 1120.
|
| [55] |
周旭, 杨倩倩, 张进, 等. 基于便携式近红外光谱仪的黄桃腐败时间快速预测[J]. 食品与机械, 2024, 40(5): 101-106, 187.
|
|
ZHOU X, YANG Q Q, ZHANG J, et al. Rapid prediction of yellow peach spoilage time based on portable near infrared spectrometer[J]. Food & machinery, 2024, 40(5): 101-106, 187.
|
| [56] |
班兆军, 高喧翔, 马肄恒, 等. 基于高光谱和深度学习的苹果品质无损检测方法[J]. 江苏农业学报, 2024, 40(8): 1446-1454.
|
|
BAN Z J, GAO X X, MA Y H, et al. Non-destructive detection method of apple quality based on hyperspectral and deep learning[J]. Jiangsu journal of agricultural sciences, 2024, 40(8): 1446-1454.
|
| [57] |
BACA-BOCANEGRA B, ESPINAR GARCÍA A I, HERNÁNDEZ-HIERRO J M, et al. Feasibility assessment on the use of near infrared hyperspectral imaging for the screening of vitamin C content and total soluble solids in strawberries[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2025, 343: ID 126542.
|
| [58] |
LI X L, WEI Z X, PENG F F, et al. Non-destructive prediction and visualization of anthocyanin content in mulberry fruits using hyperspectral imaging[J]. Frontiers in plant science, 2023, 14: ID 1137198.
|
| [59] |
Lado J, Gambetta G, Zacarias L. Key determinants of citrus fruit quality: Metabolites and main changes during maturation[J]. Scientia horticulturae, 2018, 233(2): 238-248.
|
| [60] |
ZHANG Z S, CHENG H, CHEN M Y, et al. Detection of pear quality using hyperspectral imaging technology and machine learning analysis[J]. Foods, 2024, 13(23): ID 3956.
|
| [61] |
CHENG H, ZHANG Z S, FENG Y X, et al. Nondestructive evaluation of yellowing and senescence in 'Yali' pear using integrated hyperspectral and chlorophyll fluorescence imaging[J]. Food research international, 2025, 209: ID 116254.
|
| [62] |
TSAKIRIDIS N L, SAMARINAS N, KOKKAS S, et al. In situ grape ripeness estimation via hyperspectral imaging and deep autoencoders[J]. Computers and electronics in agriculture, 2023, 212: ID 108098.
|
| [63] |
ZHAO C Y, REN Z, LI Y, et al. Growth stages discrimination of multi-cultivar navel oranges using the fusion of near-infrared hyperspectral imaging and machine vision with deep learning[J]. Agriculture, 2025, 15(14): ID 1530.
|
| [64] |
TIAN X, LIU X F, HE X, et al. Detection of early bruises on apples using hyperspectral reflectance imaging coupled with optimal wavelengths selection and improved watershed segmentation algorithm[J]. Journal of the science of food and agriculture, 2023, 103(13): 6689-6705.
|
| [65] |
LI W X, ZHOU B K, ZHOU Y Z, et al. Grape disease detection using transformer-based integration of vision and environmental sensing[J]. Agronomy, 2025, 15(4): ID 831.
|
| [66] |
WU J, LIU C L, OUYANG A G, et al. Early detection of slight bruises in yellow peaches (Amygdalus persica) using multispectral structured-illumination reflectance imaging and an improved ostu method[J]. Foods, 2024, 13(23): ID 3843.
|
| [67] |
CHEN X X, GUO C T, ZHANG C, et al. Visual detection study on early bruises of Korla pear based on hyperspectral imaging technology[J]. Guang pu Xue yu Guang pu Fen Xi, 2017, 37(1): 150-155.
|
| [68] |
MATESE A, HAMIE N, BARONTI S, et al. Integrating UAV hyperspectral imaging with machine learning techniques to predict tomato ecophysiological parameters and yield[J]. Precision agriculture, 2025, 26(4): ID 72.
|
| [69] |
LAN W J, JAILLAIS B, RENARD C M G C, et al. A method using near infrared hyperspectral imaging to highlight the internal quality of apple fruit slices[J]. Postharvest biology and technology, 2021, 175: ID 111497.
|
| [70] |
PETERS M S, AHLEBÆK M J, FRANDSEN M T, et al. Investigating the applicability of a snapshot Computed Tomography Imaging Spectrometer for the prediction of[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2025, 336: ID 126017.
|
| [71] |
XIAO H H, LI C L, WANG M Y, et al. Nutrient content prediction and geographical origin identification of bananas by combining hyperspectral imaging with chemometrics[J]. Foods, 2024, 13(22): ID 3631.
|
| [72] |
ZHAN C Y, MAO H Y, FAN R S, et al. Detection of apple sucrose concentration based on fluorescence hyperspectral image system and machine learning[J]. Foods, 2024, 13(22): ID 3547.
|
| [73] |
LI C, JIN C, ZHAI Y N, et al. Simultaneous detection of Citrus internal quality attributes using near-infrared spectroscopy and hyperspectral imaging with multi-task deep learning and instrumental transfer learning[J]. Food chemistry, 2025, 481: ID 143996.
|
| [74] |
KANWAL N, KÄMPER W, FARRAR M B, et al. Rapid assessment of lychee and mango fruit quality using hyperspectral imaging[J]. Lwt, 2025, 224: ID 117833.
|
| [75] |
DATTA D, MALLICK P K, BHOI A K, et al. Hyperspectral image classification: Potentials, challenges, and future directions[J]. Computational intelligence and neuroscience, 2022, 2022(1): ID 3854635.
|
| [76] |
ZHANG J G, SU R M, FU Q, et al. A survey on computational spectral reconstruction methods from RGB to hyperspectral imaging[J]. Scientific reports, 2022, 12: ID 11905.
|
| [77] |
SZECHYŃSKA-HEBDA M, HOŁOWNICKI R, DORUCHOWS KI G, et al. Application of hyperspectral imaging for early detection of pathogen-induced stress in cabbage as case study[J]. Agronomy, 2025, 15(7): ID 1516.
|
| [78] |
BENELLI A, CEVOLI C, RAGNI L, et al. In-field and non-destructive monitoring of grapes maturity by hyperspectral imaging[J]. Biosystems engineering, 2021, 207: 59-67.
|
| [79] |
LIANG D D, WANG N, YIN H, et al. Assessment of the optical response of bruised kiwifruit using hyperspectral imaging and its relationships with water migration[J]. Postharvest biology and technology, 2025, 225: ID 113515.
|
| [80] |
SAID A G, JOSHI B. SmartRipen: LSTM-GRU feature selection& XGBoost-CNN for fruit ripeness detection[J]. Food physics, 2025, 2: ID 100053.
|
| [81] |
HUANG W N, NIE Y T, ZHU N, et al. Hybrid label-free molecular microscopies for simultaneous visualization of changes in cell wall polysaccharides of peach at single- and multiple-cell levels during postharvest storage[J]. Cells, 2020, 9(3): ID 761.
|
| [82] |
SZYMAŃSKA-CHARGOT M, CHYLIŃSKA M, PIECZYWEK P M, et al. Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence[J]. Planta, 2016, 243(4): 935-945.
|
| [83] |
MINAS I S, BLANCO-CIPOLLONE F, STERLE D. Accurate non-destructive prediction of peach fruit internal quality and physiological maturity with a single scan using near infrared spectroscopy[J]. Food chemistry, 2021, 335: ID 127626.
|
| [84] |
GAO Q, WANG P, NIU T, et al. Soluble solid content and firmness index assessment and maturity discrimination of Malus micromalus Makino based on near-infrared hyperspectral imaging[J]. Food chemistry, 2022, 370: ID 131013.
|
| [85] |
OUYANG H K, TANG L L, MA J L, et al. Application of hyperspectral technology with machine learning for Brix detection of pastry pears[J]. Plants, 2024, 13(8): ID 1163.
|
| [86] |
SU Z Z, ZHANG C, YAN T Y, et al. Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches[J]. Frontiers in plant science, 2021, 12: ID 736334.
|
| [87] |
WENG S Z, YU S, DONG R L, et al. Nondestructive detection of storage time of strawberries using visible/near-infrared hyperspectral imaging[J]. International journal of food properties, 2020, 23(1): 269-281.
|
| [88] |
KHALED A Y, EKRAMIRAD N, DONOHUE K D, et al. Non-destructive hyperspectral imaging and machine learning-based predictive models for physicochemical quality attributes of apples during storage as affected by codling moth infestation[J]. Agriculture, 2023, 13(5): ID 1086.
|
| [89] |
SIEDLISKA A, BARANOWSKI P, ZUBIK M, et al. Detection of fungal infections in strawberry fruit by VNIR/SWIR hyperspectral imaging[J]. Postharvest biology and technology, 2018, 139: 115-126.
|
| [90] |
ZHU G Q, ZHENG S G, XU Q S, et al. Detection of fungal infection in apple using hyperspectral transformation of RGB images with kernel regression[J]. Postharvest biology and technology, 2023, 206: ID 112570.
|
| [91] |
MIN D D, ZHAO J S, BODNER G, et al. Early decay detection in fruit by hyperspectral imaging-Principles and application potential[J]. Food control, 2023, 152: ID 109830.
|
| [92] |
CHENG H, ZHANG Z S, CHENG Y D, et al. Potential of hyperspectral imaging for nondestructive determination of α-farnesene and conjugated trienol content in 'Yali' pear[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2024, 321: ID 124688.
|
| [93] |
OU Y M, YAN J Y, LIANG Z Y, et al. Hyperspectral imaging combined with deep learning for the early detection of strawberry leaf gray mold disease[J]. Agronomy, 2024, 14(11): ID 2694.
|
| [94] |
LI X L, PENG F F, WEI Z X, et al. Identification of yellow vein clearing disease in lemons based on hyperspectral imaging and deep learning[J]. Frontiers in plant science, 2025, 16: ID 1554514.
|
| [95] |
PÉREZ-RONCAL C, LÓPEZ-MAESTRESALAS A, LOPEZ-MOLINA C, et al. Hyperspectral imaging to assess the presence of powdery mildew (Erysiphe necator) in cv. carignan noir grapevine bunches[J]. Agronomy, 2020, 10(1): ID 88.
|
| [96] |
HUANG Y P, YANG Y T, SUN Y, et al. Identification of apple varieties using a multichannel hyperspectral imaging system[J]. Sensors, 2020, 20(18): ID 5120.
|
| [97] |
LÓPEZ A, OGAYAR C J, FEITO F R, et al. Classification of grapevine varieties using UAV hyperspectral imaging[J]. Remote sensing, 2024, 16(12): ID 2103.
|
| [98] |
BU Y P, HU J X, CHEN C, et al. ResNet incorporating the fusion data of RGB & hyperspectral images improves classification accuracy of vegetable soybean freshness[J]. Scientific reports, 2024, 14: ID 2568.
|
| [99] |
REVELOU P K, TSAKALI E, BATRINOU A, et al. Applications of machine learning in food safety and HACCP monitoring of animal-source foods[J]. Foods, 2025, 14(6): ID 922.
|
| [100] |
MORABITO A, DE SIMONE G, PASTORELLI R, et al. Algorithms and tools for data-driven omics integration to achieve multilayer biological insights: A narrative review[J]. Journal of translational medicine, 2025, 23(1): ID 425.
|