XIAO Ruihong1(
), TAN Lixin1,2(
), WANG Rifeng3(
), SONG Min1,4, HU Chengxi5
Received:2025-09-05
Online:2025-11-14
Foundation items:Guangxi?Science and Technology Program(AD23026282)
corresponding author:
CLC Number:
XIAO Ruihong, TAN Lixin, WANG Rifeng, SONG Min, HU Chengxi. Multi-scale Tea Leaf Disease Detection Based on Improved YOLOv11n[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202509014.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202509014
Table 1
Distribution of labels across tea leaf disease categories in the dataset
| 类别 | 训练集/个标签 | 验证集/个标签 | 测试集/个标签 | 总数/个标签 |
|---|---|---|---|---|
| 茶枯叶病 | 2 795 | 75 | 69 | 2 939 |
| 茶炭疽病 | 2 035 | 51 | 47 | 2 133 |
| 茶霉粉病 | 1 060 | 31 | 27 | 1 118 |
| 茶藻斑病 | 1 275 | 29 | 32 | 1 336 |
| 茶饼病 | 835 | 24 | 21 | 880 |
| 茶赤星病 | 1 665 | 49 | 42 | 1 756 |
| 云纹枯叶病 | 2 020 | 55 | 51 | 2 126 |
| 茶细蛾寄生病 | 890 | 27 | 22 | 939 |
| 茶红脉病 | 1 295 | 36 | 32 | 1 363 |
Table 2
Performance metrics of different improvement approaches in tea leaf disease detection
| 模型 | DMF-Upsample | SAConv | ASFF | /% | /% | /% |
|---|---|---|---|---|---|---|
| YOLOv11n | × | × | × | 85.3 | 74.2 | 82.6 |
| 改进1 | √ | × | × | 86.4 | 78.8 | 84.2 |
| 改进2 | × | √ | × | 87.8 | 73.4 | 82.9 |
| 改进3 | × | × | √ | 84.7 | 80.2 | 84.4 |
| 改进4 | √ | √ | × | 88.2 | 81.3 | 85.5 |
| 改进5 | √ | × | √ | 87.5 | 82.1 | 85.1 |
| 改进6 | × | √ | √ | 84.4 | 81.5 | 81.8 |
| YOLO-SADMFA | √ | √ | √ | 89.7 | 82.6 | 86.3 |
Table 3
Performance comparison of models on self-built tea disease dataset
| 模型名称 | /% | /% | /% | FLOPs/G | FPS |
|---|---|---|---|---|---|
| Single Shot MultiBox Detector | 83.1 | 67.8 | 71.9 | 63 | 41 |
| Faster R-CNN | 81.6 | 65.6 | 70.1 | 207 | 24 |
| RT-DETR-R18 | 90.1 | 82.2 | 85.7 | 57 | 53 |
| YOLOv5n | 80.8 | 71.4 | 79.3 | 4.2 | 192 |
| YOLOv6n | 81.5 | 68.9 | 79.7 | 11.5 | 124 |
| YOLOv7-tiny | 80.1 | 70.6 | 78.2 | 13.3 | 94 |
| YOLOv8n | 83.7 | 73 | 81.8 | 8.1 | 170 |
| YOLOv9-tiny | 81.3 | 70.1 | 80.5 | 10.7 | 162 |
| YOLOv10n | 85.1 | 74.4 | 80.9 | 8.2 | 167 |
| YOLOv11n | 85.3 | 74.2 | 82.6 | 6.6 | 179 |
| YOLO-SADMFA | 89.7 | 82.6 | 86.3 | 6.9 | 161 |
| [1] |
许咏梅, 胡临风, 王慧慧. 中国茶产业数字化赋能对茶叶出口质量影响的实证研究: 基于25个茶叶出口省份的实证分析[J]. 茶叶, 2024, 50(3): 133-144.
|
|
|
|
| [2] |
侯苗. 年龄分层视角下农业人口转移对农地流转的影响研究[D]. 哈尔滨: 东北林业大学, 2024.
|
|
|
|
| [3] |
李鹏. 中国农业劳动节约型技术进步对农业人口转移数量的影响[J]. 统计与决策, 2019, 35(20): 99-102.
|
|
|
|
| [4] |
李支立. 政策变迁视角下农业转移人口市民化研究: 以湖北省为例[D]. 长春: 吉林大学, 2023.
|
|
|
|
| [5] |
杜英杰, 宗哲英, 王祯, 等. 农作物病害诊断方法现状和展望[J]. 江苏农业科学, 2023, 51(6): 16-23.
|
|
|
|
| [6] |
孙艳歌, 吴飞, 姚建峰, 等. 多尺度自注意力特征融合的茶叶病害检测方法[J]. 农业机械学报, 2023, 54(12): 308-315.
|
|
|
|
| [7] |
楚家, 肖敏, 周迅, 等. 基于改进YOLO v8的复杂环境下农田害虫检测算法[J]. 江苏农业科学, 2025, 53(16): 192-204.
|
|
|
|
| [8] |
白凯, 张玉杰, 苏邓文, 等. 基于改进YOLO v8n的花生叶片病害检测方法[J]. 农业机械学报, 2025, 56(6): 518-526, 564.
|
|
|
|
| [9] |
侯文慧, 龚昌智, 曹文昊, 等. 基于超分辨率增强与改进YOLOv8的番茄叶片病害检测[J]. 农业工程学报, 2025, 41(16): 211-220.
|
|
|
|
| [10] |
魏明飞, 郭威, 朱华吉, 等. 复杂环境下改进YOLOX的设施黄瓜病害检测方法[J]. 中国农机化学报, 2025, 46(8): 112-120, 155.
|
|
|
|
| [11] |
刘博, 王斌成, 陶旭, 等. 基于图结构增强的番茄叶部病害识别方法[J]. 中国农机化学报, 2025, 46(5): 125-132.
|
|
|
|
| [12] |
夏顺兴, 倪铭, 罗友璐, 等. 基于改进YOLOv8n的草莓叶片病害检测方法[J]. 江苏农业学报, 2025, 41(4): 664-675.
|
|
|
|
| [13] |
高山. 基于注意力机制的茶叶病害识别技术研究[J]. 黄山学院学报, 2025, 27(2): 13-18.
|
|
|
|
| [14] |
胡艳茹, 刘德全. 基于GDDL-YOLOv8n的番茄叶病害轻量化检测算法[J]. 电子测量技术, 2025, 48(18): 29-40.
|
|
|
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
王琳毅, 白静, 李文静, 等. YOLO系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59(14): 15-29.
|
|
|
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
WOO S,
|
| [1] | YANG Qilang, YU Lu, LIANG Jiaping. Grading Asparagus officinalis L. Using Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(4): 84-94. |
| [2] | CHANG Jian, WANG Bingbing, YIN Long, LI Yanqing, LI Zhaoxin, LI Zhuang. The Lightweight Bee Pollination Recognition Model Based On YOLOv10n-CHL [J]. Smart Agriculture, 2025, 7(3): 185-198. |
| [3] | HAN Yu, QI Kangkang, ZHENG Jiye, LI Jinai, JIANG Fugui, ZHANG Xianglun, YOU Wei, ZHANG Xia. Lightweight Cattle Facial Recognition Method Based on Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(3): 173-184. |
| [4] | XIE Jiyuan, ZHANG Dongyan, NIU Zhen, CHENG Tao, YUAN Feng, LIU Yaling. Accurate Detection of Tree Planting Locations in Inner Mongolia for The Three North Project Based on YOLOv10-MHSA [J]. Smart Agriculture, 2025, 7(3): 108-119. |
| [5] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
| [6] | SI Chaoguo, LIU Mengchen, WU Huarui, MIAO Yisheng, ZHAO Chunjiang. Chilli-YOLO: An Intelligent Maturity Detection Algorithm for Field-Grown Chilli Based on Improved YOLOv10 [J]. Smart Agriculture, 2025, 7(2): 160-171. |
| [7] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
| [8] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
| [9] | YANG Xinting, HU Huan, CHEN Xiao, LI Wenzheng, ZHOU Zijie, LI Wenyong. Lightweight Detection and Recognition Model for Small Target Pests on Sticky Traps in Multi-Source Scenarios [J]. Smart Agriculture, 2025, 7(1): 111-123. |
| [10] | CHEN Junlin, ZHAO Peng, CAO Xianlin, NING Jifeng, YANG Shuqin. Lightweight YOLOv8s-Based Strawberry Plug Seedling Grading Detection and Localization via Channel Pruning [J]. Smart Agriculture, 2024, 6(6): 132-143. |
| [11] | LI Hongbo, TIAN Xin, RUAN Zhiwen, LIU Shaowen, REN Weiqi, SU Zhongbin, GAO Rui, KONG Qingming. Seedling Stage Corn Line Detection Method Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(6): 72-84. |
| [12] | LIU Chang, SUN Yu, YANG Jing, WANG Fengchao, CHEN Jin. Grape Recognition and Localization Method Based on 3C-YOLOv8n and Depth Camera [J]. Smart Agriculture, 2024, 6(6): 121-131. |
| [13] | ZHOU Xiushan, WEN Luting, JIE Baifei, ZHENG Haifeng, WU Qiqi, LI Kene, LIANG Junneng, LI Yijian, WEN Jiayan, JIANG Linyuan. Real-time Detection Algorithm of Expanded Feed Image on the Water Surface Based on Improved YOLOv11 [J]. Smart Agriculture, 2024, 6(6): 155-167. |
| [14] | YE Dapeng, JING Jun, ZHANG Zhide, LI Huihuang, WU Haoyu, XIE Limin. MSH-YOLOv8: Mushroom Small Object Detection Method with Scale Reconstruction and Fusion [J]. Smart Agriculture, 2024, 6(5): 139-152. |
| [15] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||