CAO Yuying1,2, LIU Yinchuan1,2, GAO Xinyue1,2, JIA Yinjiang1,2(), DONG Shoutian1,2(
)
Received:
2025-05-19
Online:
2025-08-01
Foundation items:
National the Science and Technology Innovation 2030 of New Generation of Artificial Intelligence major project(2021ZD0110904); Unveiling projects of Heilongjiang Province(20212XJ05A02)
About author:
CAO YuYing, E-mail: neau_caoyuying@163.com
JIA YinJiang, E-mail: jiayinjiang@126.com
corresponding author:
CLC Number:
CAO Yuying, LIU Yinchuan, GAO Xinyue, JIA Yinjiang, DONG Shoutian. LightTassel-YOLO: A Real-Time Detection Method for Maize Tassels Based on UAV Remote Sensing[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202505021.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202505021
Table 3
Comparison of experimental results for YOLOv11n models improved with different feature extraction networks
Model | P/% | R/% | AP@0.5/% | AP@0.5:95/% | Params/M | FPS | GFLOPs |
---|---|---|---|---|---|---|---|
YOLOv11n+ StarNet | 91.1 | 86.8 | 93.5 | 54.3 | 2.64 | 179.5 | 5.2 |
YOLOv11n+ VanillaNet | 90.9 | 85.7 | 93.1 | 53.3 | 3.69 | 101.2 | 6.2 |
YOLOv11n+MoblieNetV4 | 91.2 | 85.2 | 92.7 | 53.2 | 3.84 | 112.4 | 7.2 |
YOLOv11n+ ShuffleNetv2 | 91.3 | 85.8 | 93.4 | 54.6 | 2.48 | 123.3 | 5.9 |
YOLOv11n+ RepViT | 91.1 | 87.6 | 93.9 | 55.5 | 6.16 | 131.2 | 17.7 |
YOLOv11n+ EfficientViT | 91.5 | 87.9 | 93.8 | 56.2 | 3.56 | 163.9 | 6.9 |
Table 4
Comparison of YOLOv11n models with different EfficientViT varians
Model | P/% | AP@0.5/% | AP@0.5:95/% | Params/M | FPS | GFLOPs |
---|---|---|---|---|---|---|
YOLOv11n+ EfficientViT_M0 | 91.5 | 93.8 | 56.2 | 3.56 | 163.9 | 6.9 |
YOLOv11n+ EfficientViT_M1 | 92.0 | 94.3 | 55.8 | 4.37 | 152.8 | 12.6 |
YOLOv11n+ EfficientViT_M2 | 91.8 | 94.1 | 55.5 | 5.58 | 143.2 | 14.7 |
YOLOv11n+ EfficientViT_M3 | 90.8 | 94.2 | 55.7 | 8.27 | 139.8 | 18.4 |
YOLOv11n+ EfficientViT_M4 | 92.3 | 94.2 | 56.0 | 10.17 | 137.6 | 20.5 |
YOLOv11n+ EfficientViT_M5 | 91.4 | 94.3 | 56.5 | 13.85 | 122.4 | 33.0 |
Table 5
Ablation experiment results of LightTassel-YOLO model
Baseline model | Models | EfficientViT | C2PSA-CPCA | C3k2-SCConv | P/% | R/% | AP@0.5/% | Params/M | GFLOPs | FPS |
---|---|---|---|---|---|---|---|---|---|---|
YOLOv11n | Model 1 | × | × | × | 90.1 | 85.3 | 90.7 | 2.43 | 6.3 | 124.9 |
Model 2 | √ | × | × | 91.5 | 87.9 | 93.8 | 3.56 | 6.9 | 163.9 | |
Model 3 | × | √ | × | 90.8 | 86.7 | 93.3 | 2.43 | 6.3 | 239.2 | |
Model 4 | × | × | √ | 90.7 | 86.8 | 93.2 | 2.11 | 5.4 | 226.3 | |
Model 5 | √ | √ | × | 92.2 | 87.9 | 94.1 | 3.56 | 6.9 | 238.5 | |
Model 6 | √ | × | √ | 92.1 | 88.4 | 94.4 | 3.15 | 6.7 | 190.8 | |
Model 7 | × | √ | √ | 91.8 | 87.6 | 93.9 | 2.26 | 5.4 | 285.6 | |
LightTassel-YOLO | √ | √ | √ | 92.6 | 89.1 | 94.7 | 3.23 | 6.7 | 226.9 |
Table 6
Comparison between LightTassel-YOLO and mainstream object detection models
Models | P/% | R/% | AP@0.5/% | Params/M | GFLOPs |
---|---|---|---|---|---|
Faster R-CNN+ResNet50 | 85.4 | 83.7 | 86.5 | 41.35 | 93.6 |
SSD+ResNet50 | 79.1 | 75.3 | 82.3 | 27.39 | 30.6 |
YOLOv5s | 90.0 | 86.3 | 90.5 | 7.03 | 15.8 |
YOLOv7-tiny | 88.4 | 84.3 | 90.0 | 6.40 | 13.2 |
YOLOv8n | 89.9 | 86.7 | 92.5 | 3.01 | 8.1 |
YOLOv10n | 89.0 | 84.6 | 91.1 | 2.76 | 8.2 |
YOLOv11n | 90.1 | 85.3 | 90.7 | 2.43 | 6.3 |
LightTassel-YOLO | 92.6 | 89.1 | 94.7 | 3.23 | 6.7 |
Table 7
LightTassel-YOLO test results of different maize tassel test sets
Dataset | Dataset dimensions | P/% | R/% | AP@0.5/% | AP@0.5:0.95/% |
---|---|---|---|---|---|
Period | Early Tasseling | 88.4 | 79.1 | 89.0 | 50.4 |
Partial Tasseling | 90.8 | 84.0 | 91.0 | 52.7 | |
Full Tasseling | 91.9 | 88.9 | 93.5 | 57.2 | |
Height | 5 m | 91.4 | 87.7 | 93.6 | 53.3 |
10 m | 90.4 | 86.0 | 91.6 | 52.7 | |
Weather | Sunny | 89.6 | 86.7 | 91.2 | 53.9 |
Cloudy | 91.9 | 90.8 | 94.5 | 57.2 | |
Variety | DN279 | 91.9 | 88.0 | 93.6 | 56.5 |
DN285 | 90.3 | 84.3 | 91.4 | 54.9 | |
AB368 | 84.8 | 82.1 | 86.6 | 52.7 | |
QS370 | 85.3 | 83.0 | 87.9 | 53.4 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
WOO S,
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[1] | HAN Yu, QI Kangkang, ZHENG Jiye, LI Jinai, JIANG Fugui, ZHANG Xianglun, YOU Wei, ZHANG Xia. Lightweight Cattle Facial Recognition Method Based on Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(3): 173-184. |
[2] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
[3] | ZHOU Xiushan, WEN Luting, JIE Baifei, ZHENG Haifeng, WU Qiqi, LI Kene, LIANG Junneng, LI Yijian, WEN Jiayan, JIANG Linyuan. Real-time Detection Algorithm of Expanded Feed Image on the Water Surface Based on Improved YOLOv11 [J]. Smart Agriculture, 2024, 6(6): 155-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||