Smart Agriculture ›› 2025, Vol. 7 ›› Issue (6): 96-110.doi: 10.12133/j.smartag.SA202505021
• Special Issue--Remote Sensing + AI Empowering the Modernization of Agriculture and Rural Areas • Previous Articles Next Articles
CAO Yuying1,2, LIU Yinchuan1,2, GAO Xinyue1,2, JIA Yinjiang1,2(
), DONG Shoutian1,2(
)
Received:2025-05-19
Online:2025-11-30
Foundation items:国家科技创新2030“新一代人工智能”重大项目(2021ZD0110904); 黑龙江省“揭榜挂帅”科技攻关项目(20212XJ05A0201)
About author:曹玉莹,硕士,讲师,研究方向为农业视觉感知,E-mail: neau_caoyuying@163.com
CAO Yuying, E-mail: neau_caoyuying@163.com
corresponding author:
CLC Number:
CAO Yuying, LIU Yinchuan, GAO Xinyue, JIA Yinjiang, DONG Shoutian. LightTassel-YOLO: A Real-Time Detection Method for Maize Tassels Based on UAV Remote Sensing[J]. Smart Agriculture, 2025, 7(6): 96-110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202505021
Table 3
Comparison of experimental results for YOLOv11n models improved with different feature extraction networks
| Model | P/% | R/% | AP@0.5/% | AP@0.5:0.95/% | Params/M | FPS | GFLOPs |
|---|---|---|---|---|---|---|---|
| YOLOv11n+ StarNet | 91.1 | 86.8 | 93.5 | 54.3 | 2.64 | 179.5 | 5.2 |
| YOLOv11n+ VanillaNet | 90.9 | 85.7 | 93.1 | 53.3 | 3.69 | 101.2 | 6.2 |
| YOLOv11n+MoblieNetV4 | 91.2 | 85.2 | 92.7 | 53.2 | 3.84 | 112.4 | 7.2 |
| YOLOv11n+ ShuffleNetv2 | 91.3 | 85.8 | 93.4 | 54.6 | 2.48 | 123.3 | 5.9 |
| YOLOv11n+ RepViT | 91.1 | 87.6 | 93.9 | 55.5 | 6.16 | 131.2 | 17.7 |
| YOLOv11n+ EfficientViT | 91.5 | 87.9 | 93.8 | 56.2 | 3.56 | 163.9 | 6.9 |
Table 4
Comparison of YOLOv11n models with different EfficientViT varians
| Model | P/% | AP@0.5/% | AP@0.5:0.95/% | Params/M | FPS | GFLOPs |
|---|---|---|---|---|---|---|
| YOLOv11n+ EfficientViT_M0 | 91.5 | 93.8 | 56.2 | 3.56 | 163.9 | 6.9 |
| YOLOv11n+ EfficientViT_M1 | 92.0 | 94.3 | 55.8 | 4.37 | 152.8 | 12.6 |
| YOLOv11n+ EfficientViT_M2 | 91.8 | 94.1 | 55.5 | 5.58 | 143.2 | 14.7 |
| YOLOv11n+ EfficientViT_M3 | 90.8 | 94.2 | 55.7 | 8.27 | 139.8 | 18.4 |
| YOLOv11n+ EfficientViT_M4 | 92.3 | 94.2 | 56.0 | 10.17 | 137.6 | 20.5 |
| YOLOv11n+ EfficientViT_M5 | 91.4 | 94.3 | 56.5 | 13.85 | 122.4 | 33.0 |
Table 5
Ablation experiment results of LightTassel-YOLO model
| Baseline model | Models | EfficientViT | C2PSA-CPCA | C3k2-SCConv | P/% | R/% | AP@0.5/% | Params/M | GFLOPs | FPS |
|---|---|---|---|---|---|---|---|---|---|---|
| YOLOv11n | Model 1 | × | × | × | 90.1 | 85.3 | 90.7 | 2.43 | 6.3 | 124.9 |
| Model 2 | √ | × | × | 91.5 | 87.9 | 93.8 | 3.56 | 6.9 | 163.9 | |
| Model 3 | × | √ | × | 90.8 | 86.7 | 93.3 | 2.43 | 6.3 | 239.2 | |
| Model 4 | × | × | √ | 90.7 | 86.8 | 93.2 | 2.11 | 5.4 | 226.3 | |
| Model 5 | √ | √ | × | 92.2 | 87.9 | 94.1 | 3.56 | 6.9 | 238.5 | |
| Model 6 | √ | × | √ | 92.1 | 88.4 | 94.4 | 3.15 | 6.7 | 190.8 | |
| Model 7 | × | √ | √ | 91.8 | 87.6 | 93.9 | 2.26 | 5.4 | 285.6 | |
| LightTassel-YOLO | √ | √ | √ | 92.6 | 89.1 | 94.7 | 3.23 | 6.7 | 226.9 |
Table 6
Comparison between LightTassel-YOLO and mainstream object detection models
| Models | P/% | R/% | AP@0.5/% | Params/M | GFLOPs |
|---|---|---|---|---|---|
| Faster R-CNN+ResNet50 | 85.4 | 83.7 | 86.5 | 41.35 | 93.6 |
| SSD+ResNet50 | 79.1 | 75.3 | 82.3 | 27.39 | 30.6 |
| YOLOv5s | 90.0 | 86.3 | 90.5 | 7.03 | 15.8 |
| YOLOv7-tiny | 88.4 | 84.3 | 90.0 | 6.40 | 13.2 |
| YOLOv8n | 89.9 | 86.7 | 92.5 | 3.01 | 8.1 |
| YOLOv10n | 89.0 | 84.6 | 91.1 | 2.76 | 8.2 |
| YOLOv11n | 90.1 | 85.3 | 90.7 | 2.43 | 6.3 |
| LightTassel-YOLO | 92.6 | 89.1 | 94.7 | 3.23 | 6.7 |
Table 7
LightTassel-YOLO test results of different maize tassel test sets
| Dataset | Dataset dimensions | P/% | R/% | AP@0.5/% | AP@0.5:0.95/% |
|---|---|---|---|---|---|
| Period | Early tasseling | 88.4 | 79.1 | 89.0 | 50.4 |
| Partial tasseling | 90.8 | 84.0 | 91.0 | 52.7 | |
| Full tasseling | 91.9 | 88.9 | 93.5 | 57.2 | |
| Height | 5 m | 91.4 | 87.7 | 93.6 | 53.3 |
| 10 m | 90.4 | 86.0 | 91.6 | 52.7 | |
| Weather | Sunny | 89.6 | 86.7 | 91.2 | 53.9 |
| Cloudy | 91.9 | 90.8 | 94.5 | 57.2 | |
| Variety | DN279 | 91.9 | 88.0 | 93.6 | 56.5 |
| DN285 | 90.3 | 84.3 | 91.4 | 54.9 | |
| AB368 | 84.8 | 82.1 | 86.6 | 52.7 | |
| QS370 | 85.3 | 83.0 | 87.9 | 53.4 |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
WOO S,
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [1] | SONG Mingxuan, BAI Bo, YANG Juntao, ZHANG Yutao, LI Sa, LI Zhenhai, WAN Shubo, LI Guowei. Robust UAV-Based Method for Peanut Plant Height Estimation Using Bare-Soil Invariant Constraints [J]. Smart Agriculture, 2025, 7(6): 124-135. |
| [2] | LAN Yubin, WANG Chaofeng, SUN Heguang, CHEN Shengde, WANG Guobin, DENG Xiaoling, WANG Yuanjie. Low-Altitude Technology Empowering Smart Agriculture: Technical System, Application Scenarios, and Challenge Recommendations [J]. Smart Agriculture, 2025, 7(6): 18-34. |
| [3] | WANG Xuechang, XU Wenbo, ZHENG Yongjun, YANG Shenghui, LIU Xingxing, SU Daobilige, WANG Zimeng. Current Status and Development Trend of Low-Altitude Economy Industry in Orchards [J]. Smart Agriculture, 2025, 7(6): 35-57. |
| [4] | ZHAO Jun, NIE Zhigang, LI Guang, LIU Jiayu. Corn Borer Pests Infestations Detection Method Using Low-Altitude Close-Range UAV Imagery [J]. Smart Agriculture, 2025, 7(6): 111-123. |
| [5] | LI Wenzheng, YANG Xinting, SUN Chuanheng, CUI Tengpeng, WANG Hui, LI Shanshan, LI Wenyong. Light-Trapping Rice Planthopper Detection Method by Combining Spatial Depth Transform Convolution and Multi-scale Attention Mechanism [J]. Smart Agriculture, 2025, 7(5): 169-181. |
| [6] | HAN Wenkai, LI Tao, FENG Qingchun, CHEN Liping. Lightweight Apple Instance Segmentation Algorithm Based on SSW-YOLOv11n for Complex Orchard Environments [J]. Smart Agriculture, 2025, 7(5): 114-123. |
| [7] | YANG Qilang, YU Lu, LIANG Jiaping. Grading Asparagus officinalis L. Using Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(4): 84-94. |
| [8] | HAN Yu, QI Kangkang, ZHENG Jiye, LI Jinai, JIANG Fugui, ZHANG Xianglun, YOU Wei, ZHANG Xia. Lightweight Cattle Facial Recognition Method Based on Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(3): 173-184. |
| [9] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
| [10] | ZHOU Xiushan, WEN Luting, JIE Baifei, ZHENG Haifeng, WU Qiqi, LI Kene, LIANG Junneng, LI Yijian, WEN Jiayan, JIANG Linyuan. Real-time Detection Algorithm of Expanded Feed Image on the Water Surface Based on Improved YOLOv11 [J]. Smart Agriculture, 2024, 6(6): 155-167. |
| [11] | PENG Xiaodan, CHEN Fengjun, ZHU Xueyan, CAI Jiawei, GU Mengmeng. Dense Nursery Stock Detecting and Counting Based on UAV Aerial Images and Improved LSC-CNN [J]. Smart Agriculture, 2024, 6(5): 88-97. |
| [12] | LONG Jianing, ZHANG Zhao, LIU Xiaohang, LI Yunxia, RUI Zhaoyu, YU Jiangfan, ZHANG Man, FLORES Paulo, HAN Zhexiong, HU Can, WANG Xufeng. Wheat Lodging Types Detection Based on UAV Image Using Improved EfficientNetV2 [J]. Smart Agriculture, 2023, 5(3): 62-74. |
| [13] | ZHANG Gan, YAN Haifeng, HU Gensheng, ZHANG Dongyan, CHENG Tao, PAN Zhenggao, XU Haifeng, SHEN Shuhao, ZHU Keyu. Identification Method of Wheat Field Lodging Area Based on Deep Learning Semantic Segmentation and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 75-85. |
| [14] | LIU Yixue, SONG Yuyang, CUI Ping, FANG Yulin, SU Baofeng. Diagnosis of Grapevine Leafroll Disease Severity Infection via UAV Remote Sensing and Deep Learning [J]. Smart Agriculture, 2023, 5(3): 49-61. |
| [15] | WEI Yongkang, YANG Tiancong, DING Xinyao, GAO Yuezhi, YUAN Xinru, HE Li, WANG Yonghua, DUAN Jianzhao, FENG Wei. Wheat Lodging Area Recognition Method Based on Different Resolution UAV Multispectral Remote Sensing Images [J]. Smart Agriculture, 2023, 5(2): 56-67. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||