Smart Agriculture ›› 2025, Vol. 7 ›› Issue (5): 156-168.doi: 10.12133/j.smartag.SA202505023
• Special Issue--Opto-Intelligent Agricultural Innovation Technology and Application • Previous Articles
LUO Xuelun1, GOUDA Mostafa1,2, SONG Xinbei1, HU Yan1, ZHANG Wenkai1, HE Yong1, ZHANG Jin3,4(
), LI Xiaoli1(
)
Received:2025-05-23
Online:2025-09-30
Foundation items:National Natural Science Foundation of China(32171889); The Key R&D Projects in Zhejiang Province(2022C02044;2023C02043;2023C02009)
About author:LUO Xuelun, E-mail: 12013020@zju.edu.cn
corresponding author:
CLC Number:
LUO Xuelun, GOUDA Mostafa, SONG Xinbei, HU Yan, ZHANG Wenkai, HE Yong, ZHANG Jin, LI Xiaoli. Detection Method of Ectropis Grisescens Larvae in Canopy Environments Based on YOLO and Diffusion Models[J]. Smart Agriculture, 2025, 7(5): 156-168.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202505023
Table 2
Performance of YOLOv8 object detection model on various Ectropis grisescens detection tasks before and after data optimization
| 茶尺蠖检测任务 | 精确率 | 召回率 | mAP50 | F 1-Score |
|---|---|---|---|---|
| 检测四种茶尺蠖的虫龄* | 0.613 | 0.649 | 0.663 | 0.630 |
| 检测两个茶尺蠖虫龄阶段* | 0.783 | 0.763 | 0.828 | 0.773 |
| 从背景中找出茶尺蠖* | 0.846 | 0.793 | 0.871 | 0.819 |
| 检测四种茶尺蠖的虫龄** | 0.622 | 0.661 | 0.685 | 0.641 |
| 检测两个茶尺蠖虫龄阶段** | 0.800 | 0.778 | 0.855 | 0.789 |
| 从背景中找出茶尺蠖** | 0.840 | 0.829 | 0.895 | 0.835 |
Table 3
YOLO examines the performance of all instars of Ectropis grisescens from the background before and after data enhancement using a controlled diffusion model
| 数据集 | 模型 | mAP50 | 精确率 | 召回率 | F 1-Score |
|---|---|---|---|---|---|
| 数据增强前 | YOLOv8 | 0.895 | 0.840 | 0.829 | 0.835 |
| YOLOv9 | 0.908 | 0.859 | 0.826 | 0.842 | |
| YOLOv10 | 0.895 | 0.851 | 0.821 | 0.836 | |
| YOLOv11 | 0.904 | 0.848 | 0.833 | 0.840 | |
| 数据增强后 | YOLOv8 | 0.899 | 0.849 | 0.833 | 0.841 |
| YOLOv9 | 0.909 | 0.860 | 0.839 | 0.849 | |
| YOLOv10 | 0.904 | 0.847 | 0.832 | 0.839 | |
| YOLOv11 | 0.904 | 0.866 | 0.821 | 0.843 |
Table 4
YOLO examined the performance of Ectropis grisescens in two instars (1~2 years and 3~4 years) before and after data enhancement using the controlled diffusion model
| 数据集 | 模型 | mAP50 | 精确率 | 召回率 | F 1-Score |
|---|---|---|---|---|---|
| 数据增强前 | YOLOv8 | 0.855 | 0.800 | 0.778 | 0.789 |
| YOLOv9 | 0.867 | 0.807 | 0.796 | 0.801 | |
| YOLOv10 | 0.851 | 0.782 | 0.786 | 0.784 | |
| YOLOv11 | 0.859 | 0.783 | 0.793 | 0.788 | |
| 数据增强后 | YOLOv8 | 0.857 | 0.789 | 0.790 | 0.789 |
| YOLOv9 | 0.869 | 0.798 | 0.792 | 0.795 | |
| YOLOv10 | 0.858 | 0.789 | 0.789 | 0.789 | |
| YOLOv11 | 0.863 | 0.798 | 0.785 | 0.791 |
Table 5
YOLO detected the performance of Ectropis grisescens at four ages (1, 2, 3 and 4 ages) before and after data enhancement with controlled diffusion model
| 数据集 | 模型 | mAP50 | 精确率 | 召回率 | F 1-Score |
|---|---|---|---|---|---|
| 数据增强前 | YOLOv8 | 0.685 | 0.622 | 0.661 | 0.641 |
| YOLOv9 | 0.702 | 0.631 | 0.686 | 0.657 | |
| YOLOv10 | 0.687 | 0.620 | 0.673 | 0.645 | |
| YOLOv11 | 0.694 | 0.619 | 0.687 | 0.651 | |
| 数据增强后 | YOLOv8 | 0.692 | 0.632 | 0.668 | 0.649 |
| YOLOv9 | 0.701 | 0.632 | 0.677 | 0.654 | |
| YOLOv10 | 0.700 | 0.622 | 0.692 | 0.655 | |
| YOLOv11 | 0.695 | 0.626 | 0.683 | 0.653 |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
姚惠明, 周孝贵. 2016年秋季茶尺蠖暴发成因分析及防治启示[J]. 中国茶叶, 2016, 38(12): 21-22.
|
| [6] |
王志博, 毛腾飞, 白家赫, 等. 浙江省2016年茶尺蠖发生情况调查[J]. 茶叶, 2017, 43(2): 71-73.
|
|
|
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
葛超美, 殷坤山, 唐美君, 等. 灰茶尺蠖的生物学特性[J]. 浙江农业学报, 2016, 28(3): 464-468.
|
|
|
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [1] | HAN Wenkai, LI Tao, FENG Qingchun, CHEN Liping. Lightweight Apple Instance Segmentation Algorithm Based on SSW-YOLOv11n for Complex Orchard Environments [J]. Smart Agriculture, 2025, 7(5): 114-123. |
| [2] | GAO Chenhong, ZHU Qibing, HUANG Min. Embedded Fluorescence Imaging Detection System for Fruit and Vegetable Quality Deterioration Based on Improved YOLOv8 [J]. Smart Agriculture, 2025, 7(5): 146-155. |
| [3] | DANG Shanshan, QIAO Shicheng, BAI Mingyu, ZHANG Mingyue, ZHAO Chenyu, PAN Chunyu, WANG Guochen. Small Target Detection Method of Maize Leaf Disease Based on DCC-YOLOv10n [J]. Smart Agriculture, 2025, 7(5): 124-135. |
| [4] | YANG Qilang, YU Lu, LIANG Jiaping. Grading Asparagus officinalis L. Using Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(4): 84-94. |
| [5] | CHANG Jian, WANG Bingbing, YIN Long, LI Yanqing, LI Zhaoxin, LI Zhuang. The Lightweight Bee Pollination Recognition Model Based On YOLOv10n-CHL [J]. Smart Agriculture, 2025, 7(3): 185-198. |
| [6] | HAN Yu, QI Kangkang, ZHENG Jiye, LI Jinai, JIANG Fugui, ZHANG Xianglun, YOU Wei, ZHANG Xia. Lightweight Cattle Facial Recognition Method Based on Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(3): 173-184. |
| [7] | XIE Jiyuan, ZHANG Dongyan, NIU Zhen, CHENG Tao, YUAN Feng, LIU Yaling. Accurate Detection of Tree Planting Locations in Inner Mongolia for The Three North Project Based on YOLOv10-MHSA [J]. Smart Agriculture, 2025, 7(3): 108-119. |
| [8] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
| [9] | SI Chaoguo, LIU Mengchen, WU Huarui, MIAO Yisheng, ZHAO Chunjiang. Chilli-YOLO: An Intelligent Maturity Detection Algorithm for Field-Grown Chilli Based on Improved YOLOv10 [J]. Smart Agriculture, 2025, 7(2): 160-171. |
| [10] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
| [11] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
| [12] | YANG Xinting, HU Huan, CHEN Xiao, LI Wenzheng, ZHOU Zijie, LI Wenyong. Lightweight Detection and Recognition Model for Small Target Pests on Sticky Traps in Multi-Source Scenarios [J]. Smart Agriculture, 2025, 7(1): 111-123. |
| [13] | CHEN Junlin, ZHAO Peng, CAO Xianlin, NING Jifeng, YANG Shuqin. Lightweight YOLOv8s-Based Strawberry Plug Seedling Grading Detection and Localization via Channel Pruning [J]. Smart Agriculture, 2024, 6(6): 132-143. |
| [14] | LI Hongbo, TIAN Xin, RUAN Zhiwen, LIU Shaowen, REN Weiqi, SU Zhongbin, GAO Rui, KONG Qingming. Seedling Stage Corn Line Detection Method Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(6): 72-84. |
| [15] | LIU Chang, SUN Yu, YANG Jing, WANG Fengchao, CHEN Jin. Grape Recognition and Localization Method Based on 3C-YOLOv8n and Depth Camera [J]. Smart Agriculture, 2024, 6(6): 121-131. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||