Smart Agriculture ›› 2024, Vol. 6 ›› Issue (5): 108-118.doi: 10.12133/j.smartag.SA202407022
• Technology and Method • Previous Articles Next Articles
JIN Xuemeng1,2, LIANG Xiyin1,2(), DENG Pengfei1,2
Received:
2024-07-27
Online:
2024-09-30
Foundation items:
>Gansu Provincial Higher Education Institutions Industry Support Program for 2023(2023CYZC-19); >Gansu Provincial Education Science and Technology Innovation Project(2021CYZC-22)
About author:
corresponding author:
CLC Number:
JIN Xuemeng, LIANG Xiyin, DENG Pengfei. Lightweight Daylily Grading and Detection Model Based on Improved YOLOv10[J]. Smart Agriculture, 2024, 6(5): 108-118.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202407022
Table 1
The ablation study results of the YOLOv10-AD network
模型 | AKVanillaNet | C2f_DySnakeConv | PIOU | Good AP/% | Average AP% | Poor AP/% | 权重/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5/% | FPS |
---|---|---|---|---|---|---|---|---|---|---|---|
① | × | × | × | 88.6 | 73.0 | 78.4 | 5.5 | 2.70 | 8.2 | 80.0 | 124 |
② | √ | × | × | 91.4 | 76.4 | 79.2 | 4.0 | 1.92 | 5.8 | 82.3 | 163 |
③ | × | √ | × | 87.2 | 74.6 | 77.5 | 7.0 | 3.45 | 8.8 | 79.7 | 114 |
④ | × | × | √ | 87.4 | 71.3 | 77.1 | 5.5 | 2.70 | 8.2 | 78.6 | 126 |
⑤ | × | √ | √ | 87.9 | 74.9 | 78.3 | 7.0 | 3.45 | 8.8 | 80.4 | 108 |
⑥ | √ | × | √ | 91.7 | 76.0 | 79.9 | 4.0 | 1.92 | 5.8 | 82.5 | 151 |
⑦ | √ | √ | × | 92.2 | 80.4 | 82.2 | 5.0 | 2.45 | 6.2 | 84.9 | 148 |
⑧ | √ | √ | √ | 92.8 | 81.6 | 82.8 | 5.0 | 2.45 | 6.2 | 85.7 | 156 |
Table 2
Comparison test results of YOLOv10-AD network and current mainstream YOLO algorithms in daylily grading detection
模型 | 权重/MB | 参数量/M | 计算量/ GFLOPs | mAP@0.5/% | FPS |
---|---|---|---|---|---|
YOLOv3-tiny | 23.2 | 12.10 | 18.9 | 82.7 | 88 |
YOLOv5n | 5.0 | 2.50 | 7.1 | 82.5 | 120 |
YOLOv6n | 8.3 | 4.23 | 11.8 | 82.8 | 97 |
YOLOv8n | 6.3 | 3.00 | 8.1 | 85.0 | 104 |
YOLOv9t | 4.4 | 2.01 | 7.9 | 84.0 | 135 |
YOLOv9-AD | 5.2 | 2.56 | 8.1 | 84.4 | 116 |
YOLOv10n | 5.5 | 2.70 | 8.2 | 80.0 | 124 |
YOLOv10s | 15.8 | 8.04 | 24.5 | 83.3 | 84 |
YOLOV10m | 31.9 | 16.5 | 63.4 | 83.8 | 52 |
YOLOv10-AD | 5.0 | 2.45 | 6.2 | 85.7 | 156 |
Table 3
Comparison experiment results of YOLOv10-AD model and lightweight improved model in daylily grading detection
模型 | 权重/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5/% | FPS |
---|---|---|---|---|---|
YOLOv10n-Mobileone | 6.1 | 2.94 | 8.6 | 78.5 | 114 |
YOLOv10n-ShuffleNetV2 | 5.7 | 2.80 | 9.8 | 78.6 | 102 |
YOLOv10n-Mobilenetv3 | 2.8 | 1.30 | 3.2 | 81.0 | 149 |
YOLOv10n-vanillaNet | 4.3 | 2.09 | 5.4 | 80.8 | 135 |
YOLOv10-AD | 5.0 | 2.45 | 6.2 | 85.7 | 156 |
1 |
武珍珍, 洪沙沙, 吕虹瑞, 等. 黄花菜保鲜贮藏及后处理加工技术研究进展[J]. 食品与发酵工业, 2023, 49(22): 334-340.
|
|
|
2 |
王思丽, 张伶, 杨恒, 等. 深度学习语言模型的研究综述[J]. 农业图书情报学报, 2023, 35(8): 4-18.
|
|
|
3 |
蔡静敏. 基于深度学习的苹果外观无损检测系统研究与实现[D]. 呼和浩特: 内蒙古农业大学, 2020.
|
|
|
4 |
|
5 |
|
6 |
|
7 |
姚涛, 谈志鹏, 程娥, 等. 基于改进YOLOv7-seg的黄花菜检测与分割方法[J]. 农业工程学报, 2024, 40(9): 146-153.
|
|
|
8 |
吴利刚, 吕媛媛, 周倩, 等. 基于改进YOLOv5的轻量级黄花成熟检测方法[J]. 中国农机化学报, 2024, 45(7): 235-242, 268.
|
|
|
9 |
|
10 |
|
11 |
地理标志产品 庆阳黄花菜: DB62/T 4487—2021 [S]. 兰州: 甘肃省市场监督管理局, 2021.
|
12 |
NY/T 4333—2023. 脱水黄花菜加工技术规范 [S]. 北京: 中华人民共和国农业农村部, 2023.
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
[1] | SI Chaoguo, LIU Mengchen, WU Huarui, MIAO Yisheng, ZHAO Chunjiang. Chilli-YOLO: An Intelligent Maturity Detection Algorithm for Field-Grown Chilli Based on Improved YOLOv10 [J]. Smart Agriculture, 2025, 7(2): 160-171. |
[2] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
[3] | YANG Xinting, HU Huan, CHEN Xiao, LI Wenzheng, ZHOU Zijie, LI Wenyong. Lightweight Detection and Recognition Model for Small Target Pests on Sticky Traps in Multi-Source Scenarios [J]. Smart Agriculture, 2025, 7(1): 111-123. |
[4] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
[5] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[6] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
[7] | WU Xiaoyan, GUO Wei, ZHU Yiping, ZHU Huaji, WU Huarui. Transplant Status Detection Algorithm of Cabbage in the Field Based on Improved YOLOv8s [J]. Smart Agriculture, 2024, 6(2): 107-117. |
[8] | YANG Feng, YAO Xiaotong. Lightweighted Wheat Leaf Diseases and Pests Detection Model Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(1): 147-157. |
[9] | XIA Xue, CHAI Xiujuan, ZHANG Ning, ZHOU Shuo, SUN Qixin, SUN Tan. A Lightweight Fruit Load Estimation Model for Edge Computing Equipment [J]. Smart Agriculture, 2023, 5(2): 1-12. |
[10] | LI Yangde, MA Xiaohui, WANG Ji. Pineapple Maturity Analysis in Natural Environment Based on MobileNet V3-YOLOv4 [J]. Smart Agriculture, 2023, 5(2): 35-44. |
[11] | ZHAO Yu, REN Yiping, PIAO Xinru, ZHENG Danyang, LI Dongming. Lightweight Intelligent Recognition of Saposhnikovia Divaricata (Turcz.) Schischk Originality Based on Improved ShuffleNet V2 [J]. Smart Agriculture, 2023, 5(2): 104-114. |
[12] | XIA Ye, LEI Xiaohui, QI Yannan, XU Tao, YUAN Quanchun, PAN Jian, JIANG Saike, LYU Xiaolan. Detection of Pear Inflorescence Based on Improved Ghost-YOLOv5s-BiFPN Algorithm [J]. Smart Agriculture, 2022, 4(3): 108-119. |
[13] | Xia Xue, Sun Qixin, Shi Xiao, Chai Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network [J]. Smart Agriculture, 2020, 2(1): 99-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||