| [1] |
陈青, 殷程凯, 郭自良, 等. 苹果采摘机器人关键技术研究现状与发展趋势[J]. 农业工程学报, 2023, 39(4): 1-15.
|
|
CHEN Q, YIN C K, GUO Z L, et al. Current status and future development of the key technologies for apple picking robots[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(4): 1-15.
|
| [2] |
LI T, XIE F, ZHAO Z Q, et al. A multi-arm robot system for efficient apple harvesting: Perception, task plan and control[J]. Computers and electronics in agriculture, 2023, 211: ID 107979.
|
| [3] |
XIE F, LI T, FENG Q C, et al. Boosting cost-efficiency in robotics: A distributed computing approach for harvesting robots[J]. Journal of field robotics, 2025, 42(5): 1633-1648.
|
| [4] |
SAFARI Y, NAKATUMBA-NABENDE J, NAKASI R, et al. A review on automated detection and assessment of fruit damage using machine learning[J]. IEEE access, 2024, 12: 21358-21381.
|
| [5] |
ZHANG K X, LAMMERS K, CHU P Y, et al. An automated apple harvesting robot: From system design to field evaluation[J]. Journal of field robotics, 2024, 41(7): 2384-2400.
|
| [6] |
HUA W J, ZHANG Z, ZHANG W Q, et al. Key technologies in apple harvesting robot for standardized orchards: A comprehensive review of innovations, challenges, and future directions[J]. Computers and electronics in agriculture, 2025, 235: ID 110343.
|
| [7] |
MO Y J, WU Y, YANG X N, et al. Review the state-of-the-art technologies of semantic segmentation based on deep learning[J]. Neurocomputing, 2022, 493: 626-646.
|
| [8] |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2980-2988.
|
| [9] |
WANG D D, HE D J. Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background[J]. Computers and electronics in agriculture, 2022, 196: ID 106864.
|
| [10] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 779-788.
|
| [11] |
LI T, FENG Q C, QIU Q, et al. Occluded apple fruit detection and localization with a frustum-based point-cloud-processing approach for robotic harvesting[J]. Remote sensing, 2022, 14(3): ID 482.
|
| [12] |
LI X T, DING H H, YUAN H B, et al. Transformer-based visual segmentation: A survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2024, 46(12): 10138-10163.
|
| [13] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems. Red Hook, New York, USA: Curran Associates, Inc., 2017: 5998-6008.
|
| [14] |
SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 16514-16524.
|
| [15] |
RAFFEL C, ELLIS D P W. Feed-forward networks with attention can solve some long-term memory problems[EB/OL]. arXiv:1512.08756, 2015.
|
| [16] |
贾伟宽, 孟虎, 马晓慧, 等. 基于优化Transformer网络的绿色目标果实高效检测模型[J]. 农业工程学报, 2021, 37(14): 163-170.
|
|
JIA W K, MENG H, MA X H, et al. Efficient detection model of green target fruit based on optimized Transformer network[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(14): 163-170.
|
| [17] |
KOONCE B. MobileNetV3[M]// Convolutional Neural Networks with Swift for Tensorflow. Berkeley, California: Apress, 2021: 125-144.
|
| [18] |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 6848-6856.
|
| [19] |
胡广锐, 周建国, 陈超, 等. 融合轻量化网络与注意力机制的果园环境下苹果检测方法[J]. 农业工程学报, 2022, 38(19): 131-142.
|
|
HU G R, ZHOU J G, CHEN C, et al. Fusion of the lightweight network and visual attention mechanism to detect apples in orchard environment[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(19): 131-142.
|
| [20] |
罗友璐, 潘勇浩, 夏顺兴, 等. 基于改进YOLOv8的苹果叶病害轻量化检测算法[J]. 智慧农业(中英文), 2024, 6(5): 128-138.
|
|
LUO Y L, PAN Y H, XIA S X, et al. Lightweight apple leaf disease detection algorithm based on improved YOLOv8[J]. Smart agriculture, 2024, 6(5): 128-138.
|
| [21] |
NIU W J, CHEN Y X, HE B G, et al. Intelligent veins recognition method for slope rock mass geological images in complex background noise[J]. Computers & geosciences, 2025, 197: ID 105885.
|
| [22] |
REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. arXiv:1804.02767, 2018.
|
| [23] |
ZHANG Z Y, YANG Y F, XU X, et al. GVC-YOLO: A lightweight real-time detection method for cotton aphid-damaged leaves based on edge computing[J]. Remote sensing, 2024, 16(16): ID 3046.
|
| [24] |
LI H, LI J, WEI H, et al. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles[EB/OL]. arXiv: 2206.02424, 2022.
|
| [25] |
YANG L X, ZHANG R Y, LI L D, et al. SimAM: A simple, parameter-free attention module for convolutional neural networks [C]// Proceedings of the 38th International Conference on Machine Learning. New York, USA: PMLR, 2021: 11863-11874.
|
| [26] |
TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. arXiv: 2301.10051, 2023.
|
| [27] |
HAN B, LU Z A, DONG L, et al. Lightweight non-destructive detection of diseased apples based on structural re-parameterization technique[J]. Applied sciences, 2024, 14(5): ID 1907.
|
| [28] |
BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT: Real-time instance segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 9156-9165.
|
| [29] |
WANG X L, ZHANG R F, SHEN C H, et al. SOLO: A simple framework for instance segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(11): 8587-8601.
|
| [30] |
KHANAM R, HUSSAIN M. YOLOv11: An overview of the key architectural enhancements[EB/OL]. arXiv: 2410.17725, 2024.
|