| [1] |
郭志明, 王郡艺, 宋烨, 等. 果蔬品质劣变传感检测与监测技术研究进展[J]. 智慧农业(中英文), 2021, 3(4): 14-28.
|
|
GUO Z M, WANG J Y, SONG Y, et al. Research progress of sensing detection and monitoring technology for fruit and vegetable quality control[J]. Smart agriculture, 2021, 3(4): 14-28.
|
| [2] |
LI R, WANG S C, FENG H Y, et al. An intelligent chitosan/gelatin film via improving the anthocyanin-induced color recognition accuracy for beef sub-freshness differentiation monitoring[J]. Food hydrocolloids, 2024, 146: ID 109219.
|
| [3] |
SUN Q, ZHANG M, MUJUMDAR A S. Recent developments of artificial intelligence in drying of fresh food: A review[J]. Critical reviews in food science and nutrition, 2019, 59(14): 2258-2275.
|
| [4] |
XIONG X, TAN Y Q, MUBANGO E, et al. Rapid freshness and survival monitoring biosensors of fish: Progress, challenge, and future perspective[J]. Trends in food science & technology, 2022, 129: 61-73.
|
| [5] |
WANG D Y, ZHANG M, ADHIKARI B, et al. Determination of polysaccharide content in shiitake mushroom beverage by NIR spectroscopy combined with machine learning: A comparative analysis[J]. Journal of food composition and analysis, 2023, 122: ID 105460.
|
| [6] |
SUN Q, ZHANG M, MUJUMDAR A S, et al. Combined LF-NMR and artificial intelligence for continuous real-time monitoring of carrot in microwave vacuum drying[J]. Food and bioprocess technology, 2019, 12(4): 551-562.
|
| [7] |
CHEN J L, ZHANG M, XU B G, et al. Artificial intelligence assisted technologies for controlling the drying of fruits and vegetables using physical fields: A review[J]. Trends in food science & technology, 2020, 105: 251-260.
|
| [8] |
贾文珅, 吕浩林, 张上, 等. 利用便捷式可见-近红外光谱仪和机器学习分辨霉变小麦及霉变程度[J]. 智慧农业(中英文), 2024, 6(1): 89-100.
|
|
JIA W S, LÜ H L, ZHANG S, et al. Using a portable visible-near infrared spectrometer and machine learning to distinguish and quantify mold contamination in wheat[J]. Smart agriculture, 2024, 6(1): 89-100.
|
| [9] |
CHENG J H, SUN D W. Partial least squares regression (PLSR) applied to NIR and HSI spectral data modeling to predict chemical properties of fish muscle[J]. Food engineering reviews, 2017, 9(1): 36-49.
|
| [10] |
沈艳艳, 赵玉涛, 陈庚申, 等. 玉米典型叶部病害高光谱识别及其烈度分类[J]. 智慧农业(中英文), 2024, 6(2): 28-39.
|
|
SHEN Y Y, ZHAO Y T, CHEN G S, et al. Identification and severity classification of typical maize foliar diseases based on hyperspectral data[J]. Smart agriculture, 2024, 6(2): 28-39.
|
| [11] |
ABAMBA OMWANGE K, SAITO Y, FIRMANDA AL RIZA D, et al. Japanese dace (Tribolodon hakonensis) fish freshness estimation using front-face fluorescence spectroscopy coupled with chemometric analysis[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2022, 276: ID 121209.
|
| [12] |
杨春晟, 李国华, 徐秋心. 原子光谱分析[M]. 北京: 化学工业出版社, 2010.
|
|
YANG C S, LI G H, XU Q X. Atomic spectral analysis[M]. Beijing: Chemical Industry Press, 2010.
|
| [13] |
GORJI H T, SHAHABI S M, SHARMA A, et al. Combining deep learning and fluorescence imaging to automatically identify fecal contamination on meat carcasses[J]. Scientific reports, 2022, 12(1): ID 2392.
|
| [14] |
HUANG J Y, LIU X, GUO T D, et al. A high-performance FPGA-based depthwise separable convolution accelerator[J]. Electronics, 2023, 12(7): ID 1571.
|
| [15] |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 6848-6856.
|
| [16] |
HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. arXiv: 1704.04861, 2017.
|
| [17] |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 4510-4520.
|
| [18] |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 1314-1324.
|
| [19] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. arXiv:2004.10934, 2020.
|
| [20] |
LI N, YE T R, ZHOU Z H, et al. Enhanced YOLOv8 with BiFPN-SimAM for precise defect detection in miniature capacitors[J]. Applied sciences, 2024, 14(1): ID 429.
|
| [21] |
LI H, KADAV A, DURDANOVIC I, et al. Pruning filters for efficient convnets[EB/OL]. arXiv:1608.08710, 2016.
|
| [22] |
HE Y H, ZHANG X Y, SUN J. Channel pruning for accelerating very deep neural networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 1398-1406.
|
| [23] |
LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2755-2763.
|
| [24] |
LIU Z, SUN M, ZHOU T, et al. Rethinking the value of network pruning[EB/OL]. arXiv: 1810.05270, 2018.
|
| [25] |
QIN D F, LEICHNER C, DELAKIS M, et al. MobileNetV4: Universal models for the mobile ecosystem[M]// Computer Vision-ECCV 2024. Cham: Springer Nature Switzerland, 2024: 78-96.
|
| [26] |
WANG Y C, GUO S, GUO J C, et al. Towards performance-maximizing neural network pruning via global channel attention[J]. Neural networks, 2024, 171: 104-113.
|
| [27] |
ISIK B S, ALTAY F. Freshness and spoilage indicators of spinach for waste valorization: A review[J]. Bioresource technology reports, 2025, 31: ID 102171.
|
| [28] |
JIA H J, WU C L, HUANG M, et al. TTI and pH-responsive dual colorimetric sensor arrays combined with a cascaded deep learning approach for dynamic monitoring of freshness of fresh-cut fruits[J]. Food chemistry, 2025, 492: ID 145495.
|
| [29] |
VINUÉ G, SIMÓ A, ALEMANY S. The k-means algorithm for 3D shapes with an application to apparel design[J]. Advances in data analysis and classification, 2016, 10(1): 103-132.
|
| [30] |
陈玉昇, 杨燕华, 林萌, 等. 基于主元分析法的核反应堆关键参数提取研究[J]. 核动力工程, 2019, 40(S2): 35-38.
|
|
CHEN Y S, YANG Y H, LIN M, et al. Research on key parameters extraction of nuclear reactor based on principal component analysis[J]. Nuclear power engineering, 2019, 40(S2): 35-38.
|