1 | 曾曦, 胡桂兵, 秦永华. 广东省火龙果产业发展现状及对策[J]. 中国果业信息, 2019, 36(9): 9-12. | 2 | 徐磊磊, 金琰, 侯媛媛, 等. 我国火龙果市场与产业调查分析报告[J]. 农产品市场, 2021(8): 43-45. | 3 | 陆华忠, 李君, 李灿. 果园机械化生产技术研究进展[J]. 广东农业科学, 2020, 47(11): 226-235. | 3 | LU H, LI J, LI C. Research progress in orchard mechanization production technology[J]. Guangdong Agricultural Sciences, 2020, 47(11): 226-235. | 4 | 郑太雄, 江明哲, 冯明驰. 基于视觉的采摘机器人目标识别与定位方法研究综述[J]. 仪器仪表学报, 2021, 42(9): 28-51. | 4 | ZHENG T, JIANG M, FENG M. Vision based target recognition and location for picking robot: A review[J].Chinese Journal of Scientific Instrument, 2021, 42(9): 28-51. | 5 | G-M JORDI, S-C RICARDO, R-P JOAN R, et al. Fruit detection and 3D location using instance segmentation neural networks and structure-from-motion photogrammetry[J]. Computers and Electronics in Agriculture, 2020, 169: ID 105165. | 6 | 李志军, 杨圣慧, 史德帅, 等. 基于轻量化改进YOLOv5的苹果树产量测定方法[J]. 智慧农业(中英文), 2021, 3(2): 100-114. | 6 | LI Z, YANG S, SHI D, et al. Yield estimation method of apple tree based on improved lightweight YOLOv5[J]. Smart Agriculture, 2021, 3(2): 100-114. | 7 | JI J, XUZ, MA H, et al. Apple fruit recognition based on a deep learning algorithm using an improved lightweight network[J]. Applied Engineering in Agriculture, 2021, 37(1): 123-134. | 8 | 穆龙涛, 高宗斌, 崔永杰, 等. 基于改进AlexNet的广域复杂环境下遮挡猕猴桃目标识别[J]. 农业机械学报, 2019, 50(10): 24-34. | 8 | MU L, GAO Z, CUI Y, et al. Kiwifruit detection of far-view and occluded fruit based on improved AlexNet[J].Transactions of the CSAM, 2019, 50(10): 24-34. | 9 | 陈燕, 王佳盛, 曾泽钦, 等. 大视场下荔枝采摘机器人的视觉预定位方法[J]. 农业工程学报, 2019, 35(23): 48-54. | 9 | CHEN Y, WANG J, ZENG Z, et al. Vision pre-positioning method for litchi picking robot under large field of view[J].Transactions of the CSAE, 2019, 35(23): 48-54. | 10 | 彭红星, 李荆, 徐慧明, 等. 基于多重特征增强与特征融合SSD的荔枝检测[J]. 农业工程学报, 2022, 38(4): 169-177. | 10 | PENG H, LI J, XU H, et al. Litchi detection based on multiple feature enhancement and feature fusion SSD[J]. Transactions of the CSAE, 2022, 38(4): 169-177. | 11 | ROY ARUNABHA M, BHADURI JAYABRATA. Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4[J]. Computers and Electronics in Agriculture, 2022, 193: ID 106694. | 12 | XU Z, JIA R, SUN H, et al. Light-YOLOv3: Fast method for detecting green mangoes in complex scenes using picking robots[J]. Applied Intelligence, 2020, 50(12): 4670-4687. | 13 | XU P, FANG N, LIU N, et al. Visual recognition of cherry tomatoes in plant factory based on improved deep instance segmentation[J]. Computers and Electronics in Agriculture, 2022, 197: ID 106991. | 14 | 周云成, 许童羽, 郑伟, 等. 基于深度卷积神经网络的番茄主要器官分类识别方法[J]. 农业工程学报, 2017, 3(15): 219-226. | 14 | ZHOU Y, XU T, ZHENG W, et al. Classification and recognition approaches of tomato main organs based on DCNN[J]. Transactions of the CSAE, 2017, 33(15): 219-226. | 15 | ZHENG T, JIANG M, LI Y, et al. Research on tomato detection in natural environment based on RC-YOLOv4[J]. Computers and Electronics in Agriculture, 2022, 198: ID 107029. | 16 | 赵春江, 文朝武, 林森, 等. 基于级联卷积神经网络的番茄花期识别检测方法[J]. 农业工程学报, 2020, 36(24): 143-152. | 16 | ZHAO C, WEN C, LIN S, et al. Tomato florescence recognition and detection method based on cascaded neural network[J]. Transactions of the CSAE, 2020, 36(24): 143-152. | 17 | LI X, QIN Y, WANG F, et al. Pitaya detection in orchards using the MobileNet-YOLO model, 2020[C]// Technical Committee on Control Theory. Beijing, China: Chinese Association of Automation, 2020. | 18 | 王金鹏, 高凯, 姜洪喆, 等. 基于改进的轻量化卷积神经网络火龙果检测方法(英文)[J]. 农业工程学报, 2020, 36(20): 218-225. | 18 | WANG J, GAO K, JIANG H, et al. Method for detecting dragon fruit based on improved lightweight convolutional neural network[J]. Transactions of the CSAE,2020, 36(20): 218-225. | 19 | GE Z, LIU S, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[J/OL]. arXiv: , 2021. | 20 | ZHANG J, KE S. Improved YOLOX fire scenario detection method[J]. Wireless Communications and Mobile Computing, 2022, 2022: 1-8. | 21 | LIU B, HUANG J, LIN S, et al. Improved YOLOX-S abnormal condition detection for power transmission line corridors, 2021[C]// 2021 IEEE 3rd International Conference on Power Data Science (ICPDS).Piscataway, New York, USA: IEEE, 2021: 13-16.. | 22 | LIU M, ZHU C. Residual YOLOX-based Ship Object Detection Method, 2022[C]// 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE).Piscataway, New York, USA: IEEE, 2022: 427-431. | 23 | WANG J, TANG C, LI J. Towards real-time analysis of marine phytoplankton images sampled at high frame rate by a YOLOX- based object detection algorithm[C]// OCEANS 2022-Chennai.Piscataway, New York, USA: IEEE, 2022: 1-9. | 24 | WOO S, PARK L, LEE J Y, et al. CBAM: convolutional block attention module[J/OL]. arXiv: 1807. 06521, 2018. | 25 | FU L, WU F, ZOU X, et al. Fast detection of banana bunches and stalks in the natural environment based on deep learning[J]. Computers and Electronics in Agriculture, 2022, 194: ID 106800. |
|