1 |
吕秀英. 农业小虫蓟马的危害与综合防控技术[J]. 现代农村科技, 2023(9): 31-32.
|
|
LYU X Y. Hazards of agricultural insect thrips and integrated prevention and control technology[J]. Modern Rural Science and Technology, 2023, (9): 31-2.
|
2 |
罗宏伟, 冯钦, 王建波, 等. 小巢粉虱的危害程度调查[J]. 农业科技通讯, 2022(1): 137-139.
|
|
LUO H W, FENG Q, WANG J B, et al. Investigation on the damage degree of whitefly in nest[J]. Bulletin of agricultural science and technology, 2022(1): 137-139.
|
3 |
QI J T, LIU X N, LIU K, et al. An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease[J]. Computers and electronics in agriculture, 2022, 194: ID 106780.
|
4 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 39(6): 1137-1149.
|
5 |
LI W Y, WANG D J, LI M, et al. Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse[J]. Computers and electronics in agriculture, 2021, 183: ID 106048.
|
6 |
LI W Y, YANG Z K, LV J W, et al. Detection of small-sized insects in sticky trapping images using spectral residual model and machine learning[J]. Frontiers in plant science, 2022, 13: ID 915543.
|
7 |
ZHANG H B, QIN L F, LI J, et al. Real-time detection method for small traffic signs based on YOLOv3[J]. IEEE access, 2020, 8: 64145-64156.
|
8 |
WANG D J, WANG Y Z, LI M, et al. Using an improved YOLOv4 deep learning network for accurate detection of whitefly and Thrips on sticky trap images[J]. Transactions of the ASABE, 2021, 64(3): 919-927.
|
9 |
CHENG Z K, HUANG R Q, QIAN R, et al. A lightweight crop pest detection method based on convolutional neural networks[J]. Applied sciences, 2022, 12(15): ID 7378.
|
10 |
ZHANG S, WANG H, ZHANG C, et al. JutePest-YOLO: A deep learning network for jute pest identification and detection[J]. IEEE access, 2024, 12: 72938-72956.
|
11 |
XIANG Q C, HUANG X N, HUANG Z X, et al. YOLO-Pest: An insect pest object detection algorithm via CAC3 module[J]. Sensors, 2023, 23(6): ID 3221.
|
12 |
LI D W, AHMED F, WU N L, et al. YOLO-JD: A deep learning network for jute diseases and pests detection from images[J]. Plants, 2022, 11(7): ID 937.
|
13 |
DONG Q, SUN L N, HAN T X, et al. PestLite: A novel YOLO-based deep learning technique for crop pest detection[J]. Agriculture, 2024, 14(2): ID 228.
|
14 |
XUE Z Y, XU R J, BAI D, et al. YOLO-tea: A tea disease detection model improved by YOLOv5[J]. Forests, 2023, 14(2): ID 415.
|
15 |
QIN D F, LEICHNER C, DELAKIS M, et al. MobileNetV4: universal models for the mobile ecosystem[C]// Computer Vision – ECCV 2024. Cham, Germany: Springer Nature Switzerland, 2024: 78-96.
|
16 |
LI H, LI J, WEI H, et al. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles[EB/OL]. arXiv: 220602424, 2022.
|
17 |
WANG J W, XU C, YANG W, et al. A normalized gaussian wasserstein distance for tiny object detection[EB/OL]. arXiv: 211013389, 2023.
|
18 |
张博, 张苗辉, 陈运忠. 基于空间金字塔池化和深度卷积神经网络的作物害虫识别[J]. 农业工程学报, 2019, 35(19): 209-215.
|
|
ZHANG B, ZHANG M H, CHEN Y Z. Crop pest identification based on spatial pyramid pooling and deep convolution neural network[J]. Transactions of the Chinese society of agricultural engineering, 2019, 35(19): 209-215.
|
19 |
朱德利, 文瑞, 熊俊逸. 融合坐标注意力机制的轻量级玉米花丝检测[J]. 农业工程学报, 2023, 39(3): 145-153.
|
|
ZHU D L, WEN R, XIONG J Y. Lightweight corn silk detection network incorporating with coordinate attention mechanism[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(3): 145-153.
|
20 |
FU Z L, YIN L F, CUI C, et al. A lightweight MHDI-DETR model for detecting grape leaf diseases[J]. Frontiers in plant science, 2024, 15: ID 1499911.
|
21 |
王泽钧, 马凤英, 张瑜, 等. 基于注意力机制和多尺度轻量型网络的农作物病害识别[J]. 农业工程学报, 2022, 38(Z): 176-183.
|
|
WANG Z J, MA F Y, ZHANG Y, et al. Crop disease recognition using attention mechanism and multi-scale lightweight network [J]. Transactions of the Chinese society of agricultural engineering, 2022,38(Z): 176-83.
|
22 |
TIAN Y J, SU D, LAURIA S, et al. Recent advances on loss functions in deep learning for computer vision[J]. Neurocomputing, 2022, 497(C): 129-158.
|
23 |
PANARETOS V M, ZEMEL Y. Statistical aspects of Wasserstein distances[J]. Annual review of statistics and its application, 2019, 6: 405-431.
|
24 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 658-666.
|
25 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7): 12993-13000.
|
26 |
YANG Z M, WANG X L, LI J G. EIoU: An improved vehicle detection algorithm based on VehicleNet neural network[J]. Journal of physics: Conference series, 2021, 1924(1): ID 012001.
|
27 |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]// Computer Vision-ECCV 2018. Cham, Germany: Springer International Publishing, 2018: 122-138.
|
28 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: More features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 1580-1589.
|
29 |
KOONCE B. Convolutional neural networks with swift for tensorflow: Image recognition and dataset categorization[M]. Berkeley, CA: Apress, 2021
|
30 |
REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[EB/OL]. arXiv: 230509972, 2023.
|
31 |
RAHIMA KHANAM M H. YOLOv11: An overview of the key architectural enhancements[EB/OL]. arXiv: 241017725, 2024.
|