Smart Agriculture ›› 2020, Vol. 2 ›› Issue (3): 48-60.doi: 10.12133/j.smartag.2020.2.3.202007-SA006
收稿日期:
2020-07-22
修回日期:
2020-09-08
出版日期:
2020-09-30
发布日期:
2020-12-09
基金资助:
作者简介:
郭 威(1990-),男,博士研究生,主要研究方向为农业智能系统。E-mail:通讯作者:
吴华瑞
E-mail:guowei@nercita.org.cn;wuhr@nercita.org.cn
GUO Wei1(), WU Huarui1,2,3(
), ZHU Huaji1,2,3
Received:
2020-07-22
Revised:
2020-09-08
Online:
2020-09-30
Published:
2020-12-09
corresponding author:
Huarui WU
E-mail:guowei@nercita.org.cn;wuhr@nercita.org.cn
摘要:
中国设施园艺近30年来发展迅速,面积目前居世界首位,但由于务农人数呈下降趋势,如何用“机器代替人力”成为当前研究热点。为实现设施温室生产的数据感知环节作物影像和环境监测数据精细化采集,本研究设计了一套多自由度设施温室影像采集与环境监测机器人系统。机器人由感知中枢、决策中枢和执行中枢三部分构成,分别进行机器视角环境感知、数据分析与决策指令生成和动作执行。在感知层实现多角度图像、实时视频和监测数据网格化精确采集,为作物多源异构数据精细化汇聚奠定基础;传输层通过无线网桥将监测数据与控制指令汇聚至本地数据中心;数据处理层通过作物基础模型分析进行控制指令反馈信息,同时对上传图像进行预处理;最终在应用层提供web端和手机端智能服务。系统可广泛地应用在设施温室生产与研究中,用于黄瓜、番茄、大棚桃等作物的全生育期图像、实时视频和监测数据收集与分析处理,已在北京小汤山国家精准农业基地7号日光温室、石家庄市农林科学研究院5号日光温室进行示范应用,取得了较好的效果。
中图分类号:
郭威, 吴华瑞, 朱华吉. 设施温室影像采集与环境监测机器人系统设计及应用[J]. 智慧农业(中英文), 2020, 2(3): 48-60.
GUO Wei, WU Huarui, ZHU Huaji. Design and Application of Facility Greenhouse Image Collecting and Environmental Data Monitoring Robot System[J]. Smart Agriculture, 2020, 2(3): 48-60.
表 2
机器人控制性能评测
序号 | 有效次数 | 实验坐标(X,Z) | 目的坐标 (X,Z) | 平均误差/cm |
---|---|---|---|---|
1 | 5 | (218.7,80.0) | (220,80) | 1.3 |
2 | 5 | (421.0,89.5) | (420,90) | 1.1 |
3 | 5 | (619.8,70.0) | (620,70) | 0.2 |
4 | 5 | (821.2,170.5) | (820,170) | 1.3 |
5 | 5 | (1020.1,149.4) | (1020,150) | 0.6 |
6 | 5 | (1221.5,111.2) | (1220,110) | 1.9 |
7 | 5 | (1428.0,89.0) | (1420,89) | 8.0 |
8 | 5 | (1619.0,91.9) | (1620,92) | 1.0 |
9 | 5 | (1822.0,102.7) | (1820,103) | 2.0 |
10 | 5 | (2020.9,199.2) | (2020,200) | 1.2 |
11 | 5 | (2221.0,128.0) | (2220,130) | 2.2 |
12 | 5 | (2418.0,85.0) | (2420,85) | 2.0 |
1 | 孙锦, 高洪波, 田婧, 等. 我国设施园艺发展现状与趋势[J]. 南京农业大学学报, 2019, 42(4): 594-604. |
SUN J, GAO H, TIAN J, et al. Development status and trends of protected horticulture in China[J]. Journal of Nanjing Agricultural University, 2019, 42(4): 594-604. | |
2 | 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7. |
ZHAO C. State-of-the-art and recommended developmental strategic objectives of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7. | |
3 | 张猛, 房俊龙, 韩雨. 基于Zigbee和Internet的温室集群环境远程监测系统设计[J]. 农业工程学报, 2013, 29(S1): 171-176. |
ZHANG M, FANG J, HAN Y. Design on remote monitoring and control system for greenhouse group based on ZigBee and Internet[J]. Transactions of the CSAE, 2013, 29(S1): 171-176. | |
4 | 程文锋. 基于WSN的嵌入式温室监控系统相关控制问题的研究[D]. 杭州: 浙江大学, 2011. |
CHENG W. Research of the control problems in embedded greenhouse monitoring system based on WSN[D]. Hangzhou: Zhejiang University, 2011. | |
5 | 李亚迪. 北方日光温室智能监控系统的设计与实现[J]. 中国农业科技导报, 2016, 18(5): 94-101. |
LI Y. The design and implementation of intelligent monitoring system for solar greenhouse in Northern China[J]. Journal of Agricultural Science and Technology, 2016, 18(5): 94-101. | |
6 | 尚志跃, 曾成, 张馨, 等. 基于商业云平台植物工厂环境监测系统的研究与实现[J]. 农机化研究, 2017, 9: 7-13. |
SHANG Z, ZENG C, ZHANG X, et al. Research and implementation of plant environmental monitoring system based on commercial cloud platform[J]. Journal of Agricultural Mechanization Research, 2017, 9: 7-13. | |
7 | QIN X, WU G, LEI J, et al. Detecting inspection objects of power line from cable inspection robot LiDAR data[J]. Sensors, 2018, 18: ID 1284. |
8 | 杨代强. 矿用智能轮式巡检机器人路径跟踪及运动分析[J]. 煤矿机械, 2020, 41(2): 96-98. |
YANG D. Path tracking and motion analysis of mining intelligent wheel inspection robot[J]. Coal Mine Machinery, 2020, 41(2): 96-98. | |
9 | 龙卓群, 雷日兴. 履带式行走机器人避障自动控制系统设计[J]. 自动化与仪器仪表, 2018, 8: 68-70. |
LONG Z, LEI R. Design of automatic obstacle avoidance control system for tracked walking robot[J]. Automation & Instrumentation, 2018, 8: 68-70. | |
10 | 王建平, 杨宗晔. 温室兰花生长状态监测移动视觉机器人的研究[J]. 中国农机化学报, 2016, 37(10): 185-194, 253. |
WANG J, YANG Z. Research of mobile visual robot orchid growth state monitoring in greenhouse[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(10): 185-194, 253. | |
11 | ROLDÁN J J, GARCIA-AUNON P, GARZÓN M, et al. Heterogeneous multi-robot system for mapping environmental variables of greenhouses[J]. Sensors, 2016, 16: ID 1018. |
12 | BAI G, GE Y, SCOBY D, et al. NU-Spidercam: A large-scale, cable-driven, integrated sensing and robotic system for advanced phenotyping, remote sensing, and agronomic research[J]. Computers and Electronics in Agriculture, 2019, 18(3): 71-81. |
13 | 赵春江, 吴华瑞, 刘强, 等. 基于Voronoi的无线传感器网络覆盖控制优化策略[J]. 通信学报, 2013, 34(9): 115-122. |
ZHAO C, WU H, LIU Q, et al. Optimization strategy on coverage control in wireless sensor network based on Voronoi[J]. Journal on Communications, 2013, 34(9): 115-122. | |
14 | AKKAŞ M A, SOKULLU R. An IoT-based greenhouse monitoring system with Micaz motes[J]. Procedia Computer Science, 2017, 113: 603-608. |
15 | 赵轩, 纪文刚, 卓思超. 基于GPRS网络的温室大棚远程监控系统设计[J]. 工业仪表与自动化装置, 2017, 1: 98-102. |
ZHAO X, JI W, ZHUO S. Design of remote monitoring system of greenhouse based on GPRS[J]. Industrial Instrumentation & Automation, 2017, 1: 98-102. | |
16 | 潘鹤立, 景林, 钟凤林, 等. 基于Zigbee和3G/4G技术的分布式果园远程环境监控系统的设计[J]. 福建农林大学学报(自然科学版), 2014, 43(6): 661-667. |
PAN H, JING L, ZHONG F, et al. Design of remote environmental monitoring and control system for distributed orchard based on the technologies of ZigBee and 3G/4G[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2014, 43(6): 661-667. | |
17 | 陈栋. 多源异构农业感知数据接入系统的设计与实现[M]. 泰安: 山东农业大学, 2014. |
CHEN D. Design and implementation of multi-source and heterogeneous agricultural sensor data access system[M]. Tai'an: Shandong Agricultural University, 2014. | |
18 | 卢嫚, 李彦斌, 李仁忠, 等. 温室内分布式温度监测系统[J]. 中国农机化学报, 2015, 36(4): 59-64. |
LU M, LI Y, LI R, et al. Distributed temperature monitoring system in greenhouse[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(4): 59-64. | |
19 | 顾静秋. 农业数据智能感知与分析关键技术研究[D]. 北京: 北京交通大学, 2018. |
GU J. Research on smart perception and intelligent analysis of agricultural data[D]. Beijing: Beijing Jiaotong University, 2018. | |
20 | 吴力普, 王文白. 一种智能云台控制操作键盘设计[J]. 北方工业大学学报, 2011, 23(3): 46-51. |
WU L, WANG W. A design of control keyboard with intelligence used in pan/tilt[J]. Journal of North China University of Technology, 2011, 23(3): 46-51. | |
21 | 盛强. 基于Modbus-RTU和GPRS通信的温室控制系统设计[J]. 湖北农业科学, 2017, 56(15): 2395-2397. |
SHENG Q. Design of the greenhouse cluster control system based on Modbus-RTU and GPRS[J]. Hubei Agricultural Sciences, 2017, 56(15): 2395-2397. | |
22 | 褚典, 江春华, 郝宗波, 等. 基于SIP、RTP/RTCP和RTSP协议的视频监控系统[J]. 计算机与现代化, 2013, 11: 139-142. |
CHU D, JIANG C, HAO Z, et al. Video surveillance system based on SIP, RTP /RTCP and RTSP[J]. Computer and Modernization, 2013, 11: 139-142. | |
23 | 刘小飞, 李明杰. 基于JSP和Servlet架构的新闻频道系统[J]. 电脑知识与技术, 2020, 16(12): 82-83. |
LIU X, LI M. News channel system based on JSP and Servlet architecture[J]. Computer Knowledge and Technology, 2020, 16(12): 82-83. | |
24 | 李慧. 基于讯飞语音的安卓手机应用开发步骤的研究[J]. 无线互联科技, 2015, 14: 123-124. |
LI H. Study on the speech of the Android mobile phone application development based on the steps[J]. Wireless Internet Technology, 2015, 14: 123-124. | |
25 | 赵明, 董翠翠, 董乔雪, 等. 基于BIGRU的番茄病虫害问答系统柜问句分类研究[J]. 农业机械学报, 2018, 49(5): 271-276. |
ZHAO M, DONG C, DONG Q, et al. Question classification of tomato pests and diseases question answering system based on BIGRU[J]. Transactions of the CSAM, 2018, 49(5): 271-276. | |
26 | 海康威视AI Cloud开放平台[N/OL]. 海康威视AI Cloud开放算法平台Vision Master. (2019-11-12)[2020-01-03]. . |
27 | 王聃, 柴秀娟. 机器学习在植物病害识别研究中的应用[J]. 中国农机化学报, 2019, 40(9): 171-180. |
WANG D, CHAI X. Application of machine learning in plant diseases recognition[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 171-180. | |
28 | BRAHIMI M, BOUKHALFA K, MOUSSAOUI A. Deep learning for tomato diseases: Classification and symptoms visualization[J]. Applied Artificial Intelligence, 2017, 31(4): 299-315. |
29 | 杨英茹, 黄媛, 高欣娜, 等. 基于Logistic回归模型的设施番茄病毒病害预警模型构建[J]. 河北农业科学, 2019, 23(5): 91-94. |
YANG Y, HUANG Y, GAO X, et al. Early warning model construction of greenhouse tomato virus disease based on logitic regression model[J]. Journal of Hebei Agricultural Sciences, 2019, 23(5): 91-94. | |
30 | 周俊平. 农用无人植保机远程控制系统操作终端设计[J]. 农机化研究, 2019, 12: 101-106. |
ZHOU J. Operating terminal design for the remote control system of agricultural plant protection unmanned aerial vehicle[J]. Journal of Agricultural Mechanization Research, 2019, 12: 101-106. | |
31 | 吴华瑞. 基于深度残差网络的番茄叶片病害识别方法[J]. 智慧农业, 2019, 1(4): 42-49. |
WU H. Method of tomato leaf diseases recognition method based on deep residual network [J]. Smart Agriculture, 2019, 1(4): 42-49. | |
32 | ESGARIO J, KROHLING R, VENTURA J. Deep learning for classification and severity estimation of coffee leaf biotic stress[J]. Computers and Electrics in Agriculture, 2020, 169: ID 105162. |
33 | ZHANG Y, SONG C, ZHANG D. Deep learning-based object detection improvement for tomato disease[J]. IEEE Access, 2020, 8: 56607-56614. |
34 | HEMMING S, ZWART F, RLINGS A, et al. Remote control of greenhouse vegetable production with artificial intelligence-greenhouse climate, irrigation, and crop production[J]. Sensors, 2019, 19: ID 1807. |
[1] | 李志军, 杨圣慧, 史德帅, 刘星星, 郑永军. 基于轻量化改进YOLOv5的苹果树产量测定方法[J]. 智慧农业(中英文), 2021, 3(2): 100-114. |
[2] | . 基于无人机图像以及不同机器学习和深度学习模型的小麦倒伏率检测[J]. 智慧农业(中英文), 2021, 3(2): 23-34. |
[3] | 邱文杰, 叶进, 胡亮青, 杨娟, 李其利, 莫贱友, 易万茂. 面向植物病害识别的卷积神经网络精简结构Distilled-MobileNet模型[J]. 智慧农业(中英文), 2021, 3(1): 109-117. |
[4] | 李亮德, 王秀娟, 康孟珍, 华净, 樊梦涵. 基于语义融合与模型蒸馏的农业实体识别[J]. 智慧农业(中英文), 2021, 3(1): 118-128. |
[5] | 冯青春, 王秀, 邱权, 张春凤, 李斌, 徐瑞峰, 陈立平. 畜禽舍防疫消毒机器人设计与试验[J]. 智慧农业(中英文), 2020, 2(4): 79-88. |
[6] | 魏靖, 王玉亭, 袁会珠, 张梦蕾, 王振营. 基于深度学习与特征可视化方法的草地贪夜蛾及其近缘种成虫识别[J]. 智慧农业(中英文), 2020, 2(3): 75-85. |
[7] | FLORESPaulo, MATHEWJithin, JAHANNusrat, STENGERJohn. 利用图像和机器学习检测大豆作物幼苗期玉米杂苗[J]. 智慧农业(中英文), 2020, 2(3): 61-74. |
[8] | 韩书庆, 张晶, 程国栋, 彭英琦, 张建华, 吴建寨. 奶牛跛行自动识别技术研究现状与挑战[J]. 智慧农业(中英文), 2020, 2(3): 21-36. |
[9] | 李华龙, 李淼, 詹凯, 刘先旺, 杨选将, 胡泽林, 郭盼盼. 蛋鸡设施养殖环境质量评价预测模型构建方法及性能测试[J]. 智慧农业(中英文), 2020, 2(3): 37-47. |
[10] | 冯青春, 陈建, 成伟, 王秀. 面向番茄植株相近色目标识别的多波段图像融合方法[J]. 智慧农业(中英文), 2020, 2(2): 126-134. |
[11] | 周成全, 叶宏宝, 俞国红, 胡俊, 徐志福. 基于机器视觉与深度学习的西兰花表型快速提取方法研究[J]. 智慧农业(中英文), 2020, 2(1): 121-132. |
[12] | 夏雪, 孙琦鑫, 侍啸, 柴秀娟. 基于轻量级无锚点深度卷积神经网络的树上苹果检测模型[J]. 智慧农业(中英文), 2020, 2(1): 99-110. |
[13] | 吴华瑞. 基于深度残差网络的番茄叶片病害识别方法[J]. 智慧农业, 2019, 1(4): 42-49. |
[14] | 陈桂芬, 赵姗, 曹丽英, 傅思维, 周佳鑫. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44. |
[15] | 周超, 徐大明, 吝凯, 陈澜, 张松, 孙传恒, 杨信廷. 基于近红外机器视觉的鱼类摄食强度评估方法研究[J]. 智慧农业, 2019, 1(1): 76-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||