1 |
COWIE J, LEHNERT W. Information extraction[J]. Communications of the ACM, 1996, 39(1): 80-91.
|
2 |
LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]// The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, USA: Association for Computational Linguistics, 2016: ID N16-1030.
|
3 |
李贯峰, 张鹏. 一个基于农业本体的 Web 知识抽取模型[J]. 江苏农业科学, 2018, 46(4): 201-205.
|
|
LI G, ZHANG P. A web knowledge extraction model based on agricultural ontology[J]. Jiangsu Agricultural Sciences, 2018, 46 (4): 201-205.
|
4 |
王春雨, 王芳. 基于条件随机场的农业命名实体识别研究[J]. 河北农业大学学报, 2014, 37(1): 132-135.
|
|
WANG C, WANG F. Research on agricultural named entity recognition based on conditional random field[J]. Journal of Hebei Agricultural University, 2014, 37 (1): 132-135.
|
5 |
TSENG H, CHANG P-C, ANDREW G, et al. A conditional random field word segmenter for sighan bakeoff 2005[C]// Proceedings of the fourth SIGHAN workshop on Chinese language Processing. San Diego, USA: Association for Computational Linguistics, 2005.
|
6 |
MALARKODI C, LEX E, DEVI S L J. Named entity recognition for the agricultural domain[J]. Research in Computing Science, 2016, 117(1): 121-132.
|
7 |
刘晓俊. 面向农业领域的命名实体识别研究[D]. 合肥: 安徽农业大学, 2019.
|
|
LIU X. Research on named entity recognition for agriculture[D]. Hefei: Anhui Agricultural University, 2019.
|
8 |
BISWAS P, SHARAN A, VERMA S. Named entity recognition for agriculture domain using word net[J]. IInternational Journal of Computer & Mathematical Sciences2016, 5(10): 29-36.
|
9 |
MILLER G A. WordNet: An electronic lexical database[M]. Massachusetts: MIT press, 1998.
|
10 |
LI J, SUN A, HAN J, et al. A survey on deep learning for named entity recognition[J]. IEEE Transactions on Knowledge Data Engineering, 2020 (99): 1.
|
11 |
MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]// Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. San Diego, USA: Association for Computational Linguistics, 2009: 1003-1011.
|
12 |
ZENG D, LIU K, CHEN Y, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]// Proceedings of the 2015 conference on empirical methods in natural language processing. Lisbon, Portugal: Association for Computational Linguistics, 2015: 1753-1762.
|
13 |
DEVLIN J, CHANG M-W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, USA: Association for Computational Linguistics, 2018.
|
14 |
POLINO A, PASCANU R, ALISTARH D. Model compression via distillation and quantization[EB/OL]. 2018. arXiv:.
|
15 |
HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. 2015. arXiv:.
|
16 |
ZHOU Z. A brief introduction to weakly supervised learning[J]. National Science Review, 2018, 5(1): 44-53.
|
17 |
米嘉. 大规模中文文本检索中的高性能索引研究[D]. 北京: 中国科学院, 2005.
|
|
MI J. Research on high performance index in large scale Chinese text retrieval[D]. Beijing: Chinese Academy of Sciences, 2005.
|
18 |
LUO L, YANG Z, YANG P, et al. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition[J]. Bioinformatics, 2018, 34(8): 1381-1388.
|
19 |
SOUZA F, NOGUEIRA R, LOTUFO R. Portuguese named entity recognition using BERT-CRF[EB/OL]. 2019. arXiv:.
|
20 |
GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al. LSTM: A search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(10): 2222-2232.
|
21 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, US: Carran Associates Inc., 2017: 6000-6010.
|
22 |
DONG C, ZHANG J, ZONG C, et al. Character-based LSTM-CRF with radical-level features for Chinese named entity recognition[C]//International Conference on Computer Processing of Oriental Languages National CCF Conference on Natural Language Processing and Chinese Computing. Berlin, German: Springer, 2016: 239-250.
|
23 |
YAN H, DENG B, LI X, et al. Tener: Adapting transformer encoder for name entity recognition[EB/OL]. 2019. arXiv:.
|
24 |
JIANG S, ZHAO S, HOU K, et al. A BERT-BiLSTM-CRF model for chinese electronic medical records named entity recognition[C]// 2019 12th International Conference on Intelligent Computation Technology and Automation. Piscataway, New York, USA: IEEE, 2019: 166-169.
|
25 |
JAWAHAR G, SAGOT B, SEDDAH D. What does BERT learn about the structure of language?[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. San Diego, USA: Association for Computational Linguistics, 2019.
|
26 |
OPITZ J, BURST S. Macro F1 and Macro F1[EB/OL]. 2019. arXiv:.
|
27 |
GRAVE E, BOJANOWSKI P, GUPTA P, et al. Learning word vectors for 157 languages[C]// Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). Miyazaki, Japan: European Language Resources Association (ELRA), 2018.
|
28 |
KINGMA D P, BA J J A P A. Adam: A method for stochastic optimization[EB/OL]
|
|
// 3rd International Conference on Learning Representations. Ithaca, NY: arXiv. org. 2015: 13.
|