1 |
张立伟, 王辽卫. 我国油茶产业的发展现状与展望[J]. 中国油脂, 2021, 46(6): 6-9, 27.
|
|
ZHANG L W, WANG L W. Prospect and development status of oil-tea camellia industry in China[J]. China oils and fats, 2021, 46(6): 6-9, 27.
|
2 |
吴鹏飞, 姚小华. 种植密度对普通油茶炭疽病病害发生的影响[J]. 中国油料作物学报, 2019, 41(3): 455-460.
|
|
WU P F, YAO X H. Effect of planting density on anthracnose occurrence of Camellia oleifera [J]. Chinese journal of oil crop sciences, 2019, 41(3): 455-460.
|
3 |
张蕊, 李锦涛. 基于深度学习的场景分割算法研究综述[J]. 计算机研究与发展, 2020, 57(4): 859-875.
|
|
ZHANG R, LI J T. A Survey on Algorithm Research of Scene Parsing Based on Deep Learning[J]. Journal of computer research and development, 2020, 57(4): 859-875.
|
4 |
HAQUE M A, MARWAHA S, ARORA A, et al. A lightweight convolutional neural network for recognition of severity stages of maydis leaf blight disease of maize[J]. Frontiers in plant science, 2022, 13: ID 1077568.
|
5 |
PRABHAKAR M, PURUSHOTHAMAN R, AWASTHI D P. Deep learning based assessment of disease severity for early blight in tomato crop[J]. Multimedia tools and applications, 2020, 79(39): 28773-28784.
|
6 |
TENDANG S, CHAMNONGTHAI K. Rice-disease severity level estimation using deep convolutional neural network[C]// 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). Piscataway, New Jersey, USA: IEEE, 2021: 1-4.
|
7 |
万军杰, 祁力钧, 卢中奥, 等. 基于迁移学习的GoogLeNet果园病虫害识别与分级[J]. 中国农业大学学报, 2021, 26(11): 209-221.
|
|
WAN J J, QI L J, LU Z A, et al. Recognition and grading of diseases and pests in orchard by GoogLeNet based on transfer learning[J]. Journal of China agricultural university, 2021, 26(11): 209-221.
|
8 |
LIU B, DING Z, TIAN L, et al. Grape leaf disease identification using improved deep convolutional neural networks[J]. Frontiers in plant science, 2020, 11: ID 1082.
|
9 |
王振, 张善文, 赵保平. 基于级联卷积神经网络的作物病害叶片分割[J]. 计算机工程与应用, 2020, 56(15): 242-250.
|
|
WANG Z, ZHANG S W, ZHAO B P. Crop diseases leaf segmentation method based on cascade convolutional neural network[J]. Computer engineering and applications, 2020, 56(15): 242-250.
|
10 |
GARG K, BHUGRA S, LALL B. Automatic quantification of plant disease from field image data using deep learning[C]// 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway, New Jersey, USA: IEEE, 2021: 1965-1972.
|
11 |
GONÇALVES JULIANO P, PINTO FRANCISCO A C, QUEIROZ DANIEL M, et al. Deep learning architectures for semantic segmentation and automatic estimation of severity of foliar symptoms caused by diseases or pests[J]. Biosystems engineering, 2021, 210: 129-142.
|
12 |
茹佳棋, 吴斌, 翁翔, 等. 基于改进UNet++模型的葡萄黑腐病病斑分割和病害程度分级[J]. 浙江农业学报, 2023, 35(11): 2720-2730.
|
|
RU J Q, WU B, WENG X, et al. Disease spot segmentation and disease degree classification of grape black rot based on improved UNet++ model[J]. Acta agriculturae Zhejiangensis, 2023, 35(11): 2720-2730.
|
13 |
邓朝, 纪苗苗, 任永泰. 基于Mask R-CNN的马铃薯叶片晚疫病量化评价[J]. 扬州大学学报(农业与生命科学版), 2022, 43(1): 135-142.
|
|
DENG Z, JI M M, REN Y T. Quantitative evaluation of potato late blight disease based on Mask R-CNN[J]. Journal of Yangzhou university (agricultural and life science edition), 2022, 43(1): 135-142.
|
14 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2021: 10012-10022.
|
15 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 10781-10790.
|
16 |
安徽省市场监督管理局. 茶炭疽病测报调查与防治技术规程: DB34/T 3863—2021 [S].
|
17 |
SHU J H, NIAN F D, YU M H, et al. An improved mask R-CNN model for multiorgan segmentation[J]. Mathematical Problems in Engineering, 2020, 2020: 1-11.
|
18 |
ZHANG Z, HUANG S, LIU X, et al. Adversarial attacks on YOLACT instance segmentation[J]. Computers & Security, 2022, 116: ID 102682.
|
19 |
SHAFIQ M, GU Z. Deep residual learning for image recognition: A survey[J]. Applied sciences, 2022, 12(18): ID 8972.
|
20 |
杨毅, 桑庆兵. 多尺度特征自适应融合的轻量化织物瑕疵检测[J]. 计算机工程, 2022, 48(12): 288-295.
|
|
YANG Y, SANG Q B. Lightweight-fabric defect detection based on adaptive fusion of multiscale features[J]. Computer engineering, 2022, 48(12): 288-295.
|
21 |
ZHU L, LEE F, CAI J, et al. An improved feature pyramid network for object detection[J]. Neurocomputing, 2022, 483: 127-139.
|
22 |
蓝金辉, 王迪, 申小盼. 卷积神经网络在视觉图像检测的研究进展[J]. 仪器仪表学报, 2020, 41(4): 167-182.
|
|
LAN J H, WANG D, SHEN X P. Research progress on visual image detection based on convolutional neural network[J]. Chinese journal of scientific instrument, 2020, 41(4): 167-182.
|
23 |
WANG X, KONG T, SHEN C, et al. Solo: Segmenting objects by locations[C]// Computer Vision-ECCV 2020. ECCV 2020. Lecture Notes in Computer Science. Cham, Germany: Springer, 2020: 649-665.
|