Smart Agriculture ›› 2021, Vol. 3 ›› Issue (3): 22-37.doi: 10.12133/j.smartag.2021.3.3.202107-SA006
陈梅香1,2,3(), 张瑞瑞1,2,3, 陈立平1,2,3(
), 唐青1,2,3, 夏浪1,2,3
收稿日期:
2021-07-16
修回日期:
2021-09-07
出版日期:
2021-06-30
发布日期:
2021-10-29
基金资助:
作者简介:
陈梅香(1971-),女,博士,副研究员,研究方向为病虫害自动监测与防控。E-mail:通讯作者:
陈立平
E-mail:chenmx@nercita.org.cn;chenlp@ nercita.org.cn
CHEN Meixiang1,2,3(), ZHANG Ruirui1,2,3, CHEN Liping1,2,3(
), TANG Qing1,2,3, XIA Lang1,2,3
Received:
2021-07-16
Revised:
2021-09-07
Online:
2021-06-30
Published:
2021-10-29
corresponding author:
CHEN Liping
E-mail:chenmx@nercita.org.cn;chenlp@ nercita.org.cn
摘要:
无人机具有作业效率高、地形适应性好等独特优势,近年在农林业中应用范围不断扩大,相关研究成果数量呈快速上升式发展。为掌握无人机农林应用全球研究态势,本研究采集2011—2020年期间Web of Science 核心合集数据库中无人机农林应用全球研究相关文献数据,利用VOSviewer等统计软件对文献进行科学计量分析。分析结果表明,自2017年开始,无人机农林业应用研究发文数量快速增加,全球已有94个国家/地区、1778个机构开展了研究;发文量排名前三位的国家依次是美国、中国和澳大利亚,表明这三个国家从事无人机农林业应用的科研实力强,学术影响力大;共有398种期刊发表了有关无人机农林业应用研究文章,约占全部收录期刊的1.90%,说明更多的期刊开始关注无人机农林业应用研究;发文最多的期刊是由MDPI主办的Remote Sensing;被引次数最多的文章内容主要是关注无人机系统在摄影测量和遥感上的传感、导航、定位和通用数据处理等的研究现状。此外,对无人机农林业应用研究热点进行分析发现,无人机施药、无人机病虫害遥感、植物表型获取是无人机农林业应用的主要研究热点。本研究可为无人机在农林业上的创新研究、科研团队之间的合作提供参考。
中图分类号:
陈梅香, 张瑞瑞, 陈立平, 唐青, 夏浪. 无人机农林业应用全球研究态势分析[J]. 智慧农业(中英文), 2021, 3(3): 22-37.
CHEN Meixiang, ZHANG Ruirui, CHEN Liping, TANG Qing, XIA Lang. Investigation on Advances of Unmanned Aerial Vehicle Application Research in Agriculture and Forestry[J]. Smart Agriculture, 2021, 3(3): 22-37.
表1
2011—2020年无人机农林业应用相关技术研究领域分析
序号 | 研究领域 | 发文数量/篇 | 占发文总量的百分比/% |
---|---|---|---|
1 | 遥感技术 | 656 | 43.50 |
2 | 生态环境科学 | 547 | 36.27 |
3 | 图像处理技术 | 484 | 32.10 |
4 | 地质科学 | 399 | 26.46 |
5 | 工程应用技术 | 268 | 17.77 |
6 | 计算机科学 | 176 | 11.67 |
7 | 植物科学 | 158 | 10.48 |
8 | 自然地理学 | 125 | 8.29 |
9 | 化学 | 77 | 5.11 |
10 | 仪器仪表 | 57 | 3.78 |
11 | 水资源 | 52 | 3.45 |
12 | 科学技术其它专题 | 44 | 2.92 |
13 | 昆虫学 | 35 | 2.32 |
14 | 气象学大气科学 | 34 | 2.25 |
15 | 海洋淡水生物学 | 25 | 1.66 |
16 | 物理学 | 24 | 1.59 |
17 | 生物化学分子生物学 | 22 | 1.46 |
18 | 地球化学地球物理 | 22 | 1.46 |
19 | 电信 | 22 | 1.46 |
20 | 材料科学 | 21 | 1.39 |
表2
2011—2020年无人机农林业应用领域文献被引量排名前10的文章
序号 | 文献作者 | 文献标题 | 期刊名称 | 文章类型 | 引用次数/次 |
---|---|---|---|---|---|
1 | Colomina和Molina [ | Unmanned aerial systems for photogrammetry and remote sensing: A review | Isprs Journal of Photogrammetry and Remote Sensing | 综述 | 1157 |
2 | Zhang和Kovacs[ | The application of small unmanned aerial systems for precision agriculture: A review | Precision Agriculture | 综述 | 763 |
3 | Watts等[ | Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use | Remote Sensing | 研究 | 424 |
4 | Turner 等[ | An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds | Remote Sensing | 研究 | 394 |
5 | Niethammer等[ | UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results | Engineering Geology | 研究 | 365 |
6 | Harwin和Lucieer[ | Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery | Remote Sensing | 研究 | 360 |
7 | Pajares[ | Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs) | Photogrammetric Engineering and Remote Sensing | 研究 | 309 |
8 | Bendig等[ | Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging | Remote Sensing | 研究 | 284 |
9 | Zarco-tejada 等[ | Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods | European Journal of Agronomy | 研究 | 283 |
10 | D'oleire-oltmanns等[ | Unmanned Aerial Vehicle (UAV) for monitoring soil erosion in Morocco | Remote Sensing | 研究 | 273 |
表3
2011—2020年无人机农林业应用领域发文量排名前10的研究机构
序号 | 研究机构英文名称 | 研究机构中文名称 | 国家/地区 | 发文数量/篇 | 发文量百分比/% |
---|---|---|---|---|---|
1 | UNITED STATES DEPARTMENT OF AGRICULTURE USDA | 美国农业部 | 美国 | 92 | 6.10 |
2 | CHINESE ACADEMY OF SCIENCES | 中国科学院 | 中国 | 61 | 4.05 |
3 | SOUTH CHINA AGRICULTURAL UNIVERSITY | 华南农业大学 | 中国 | 46 | 3.05 |
4 | TEXAS A&M UNIVERSITY | 得州农工大学 | 美国 | 35 | 2.32 |
5 | CHINA AGRICULTURAL UNIVERSITY | 中国农业大学 | 中国 | 34 | 2.26 |
6 | WUHAN UNIVERSITY | 武汉大学 | 中国 | 33 | 2.19 |
7 | FLORIDA STATE UNIVERSITY | 佛罗里达州立大学 | 美国 | 32 | 2.12 |
8 | CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS CSIC | 西班牙最高科研理事会 | 西班牙 | 31 | 2.06 |
9 | BEIJING ACADEMY OF AGRICULTURE AND FORESTRY SCIENCES | 北京市农林科学院 | 中国 | 27 | 1.79 |
10 | CHINESE ACADEMY OF AGRICULTURAL SCIENCES | 中国农业科学院 | 中国 | 27 | 1.79 |
表4
2011—2020年无人机农林业应用领域发文量排名前10期刊
序号 | 期刊名称 | 发文数量 | 总被引次数 | 出版地 | 影响因子 | 分区 |
---|---|---|---|---|---|---|
1 | Remote Sensing | 277 | 8686 | 瑞士 | 4.848 | Q2 |
2 | Computers and Electronics in Agriculture | 60 | 1383 | 英国 | 5.565 | Q1 |
3 | Sensors | 51 | 532 | 瑞士 | 3.576 | Q2 |
4 | International Journal of Remote Sensing | 46 | 753 | 英国 | 3.151 | Q2 |
5 | Isprs Journal of Photogrammetry and Remote Sensing | 42 | 2826 | 荷兰 | 8.979 | Q1 |
6 | International Journal of Agricultural and Biological Engineering | 37 | 544 | 中国 | 2.032 | Q2 |
7 | Frontiers in Plant Science | 36 | 979 | 瑞士 | 5.753 | Q1 |
8 | IEEE Journal of Selected Topics In Applied Earth Observations and Remote | 26 | 532 | 美国 | 3.784 | Q2 |
9 | Remote Sensing of Environment | 25 | 1125 | 美国 | 10.164 | Q1 |
10 | Forests | 24 | 960 | 瑞士 | 2.633 | Q1 |
1 | 问延安. 基于知识图谱的国际无人机研究可视化分析[J]. 郑州航空工业管理学院学报, 2018, 36(6): 16-25, 93. |
WEN Y. Visualization analysis of international UAV research based on knowledge map[J]. Journal of Zhengzhou Institute of Aeronautical Industry Management, 2018, 36(6): 16-25, 93. | |
2 | 徐旻, 张瑞瑞, 陈立平, 等. 智能化无人机植保作业关键技术及研究进展[J]. 智慧农业, 2019, 1(2): 20-33. |
XU M, ZHANG R, CHEN L, et al. Key technology analysis and research progress of UAV intelligent plant protection[J]. Smart Agriculture, 2019, 1(2): 20-33. | |
3 | 张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. |
ZHANG D, LAN Y, CHEN L, et al. Current status and future trends of agricultural aerial spraying technology in China[J]. Transactions of the CSAM, 2014,45(10):53-59. | |
4 | FAICAL B, FREITAS H, GOMES P, et al. An adaptive approach for UAV-based pesticide spraying in dynamic environments[J]. Computers and Electronics in Agriculture, 2017,138: 210-223. |
5 | 张瑞瑞, 李龙龙, 文瑶, 等. 植保无人机喷施雾滴沉积特性的荧光示踪分析[J]. 农业工程学报, 2020, 36(6): 47-55. |
ZHANG R, LI L, WEN Y, et al. Fluorescence tracer method for analysis of droplet deposition pattern characteristics of the sprays applied via unmanned aerial vehicle[J]. Transactions of the CSAE, 2020, 36(6): 47-55. | |
6 | TAO H, FENG H, XU L, et al. Estimation of crop growth parameters using UAV-Based hyperspectral remote sensing data[J]. Sensors, 2020, 20(5): ID 1296. |
7 | GAO D, SUN Q, HU B, et al. A framework for agricultural pest and disease monitoring based on Internet-of-Things and unmanned aerial vehicles[J]. Sensors, 2020,20: ID 1487. |
8 | 何雄奎. 我国植保无人机的研究与发展应用浅析[J]. 农药科学与管理, 2018, 39(9): 10-17. |
HE X. Brief analysis on the research,development and application of plant protection UAV in China[J]. Pesticide Science and Administration, 2018, 39(9): 10-17. | |
9 | 兰玉彬, 陈盛德, 邓继忠, 等. 中国植保无人机发展形势及问题分析[J]. 华南农业大学学报, 2019,40(5)217-225. |
LAN Y, CHEN S, DENG J, et al. Development situation and problem analysis of plant protection unmanned aerial vehicle in China[J]. Journal of South China Agricultural University, 2019, 40(5): 217-225. | |
10 | 张俊, 廉勇, 杨志刚, 等. 植保无人机发展历程、优缺点分析及应用前景[J]. 现代农业, 2020(4): 4-7. |
ZHANG J, LIAN Y, YANG Z, et al. Development history, advantages and disadvantages analysis and application prospect of plant protection UAV[J]. Modern agriculture, 2020(4): 4-7. | |
11 | 陈盛德, 兰玉彬, 李继宇, 等. 航空喷施与人工喷施方式对水稻施药效果比较[J]. 华南农业大学学报, 2017,38(4):103-109. |
CHEN S, LAN Y, LI J, et al. Comparison of the pesticide effects of aerial and artificial spray applications for rice[J]. Journal of South China Agricultural University, 2017, 38(4): 103-109. | |
12 | KHARIM M, WAYAYOK A, SHARIFF A, et al. Droplet deposition density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation[J]. Computers and Electronics in Agriculture, 2019, 167: ID 105045. |
13 | 陈豪明, 周宇杰, 骆琴, 等. 植保无人机全程解决水稻病虫草害效果评价[J]. 中国稻米, 2020, 26(5): 97-101. |
CHEN H, ZHOU Y, LUO Q, et al. Evaluation of the effect of plant protection UAV on rice diseases, insect pests and weeds[J]. China Rice, 2020, 26(5): 97-101. | |
14 | CHEN P, LAN Y, HUANG X, et al. Droplet deposition and control of planthoppers of different nozzles in two-stage rice with a quadrotor unmanned aerial vehicle[J]. Agronomy-Basel, 2020,10: ID 14. |
15 | QIN W, XUE X, ZHANG S, et al. Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew[J]. International Journal of Agricultural and Biological Engineering, 2018,11: 27-32. |
16 | MENG Y, LAN Y, MEI G, et al. Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control[J]. International Journal of Agricultural and Biological Engineering, 2018,11: 46-53. |
17 | WANG G, LAN Y, YUAN H, et al. Comparison of spray deposition, control efficacy on wheat aphids and working efficiency in the wheat field of the unmanned aerial vehicle with boom sprayer and two conventional knapsack sprayers[J]. Applied Sciences-Basel, 2019, 9: ID 218. |
18 | WANG G, LAN Y, QI H X, et al. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: Effect of spray volume on deposition and the control of pests and disease in wheat[J]. Pest Management Science, 2019, 75: 1546-1555. |
19 | TAO H, FENG H, XU L, et al. Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images[J]. Sensors, 2020, 20: ID 1231. |
20 | ZHANG X, LIANG Y, QIN Z, et al. Application of multi-rotor unmanned aerial vehicle application in management of stem borer (lepidoptera) in sugarcane[J]. Sugar Tech, 2019, 21: 847-852. |
21 | ZHANG X, SONG X, LIANG Y, et al. Effects of spray parameters of drone on the droplet deposition in sugarcane canopy[J]. Sugar Tech, 2020, 22: 583-588. |
22 | ZHENG Y, YANG S, ZHAO C, et al. Modelling operation parameters of UAV on spray effects at different growth stages of corns[J]. International Journal of Agricultural and Biological Engineering, 2017, 10: 57-66. |
23 | HAN L, YANG G, YANG H, et al. Clustering field-based maize phenotyping of plant-height growth and canopy spectral dynamics using a UAV remote-sensing approach[J]. Frontiers in Plant Science, 2018, 9: ID 1638. |
24 | HAN L, YANG G, DAI H, et al. Fuzzy clustering of maize plant-height patterns using time series of UAV remote-sensing images and variety traits[J]. Frontiers in Plant Science, 2019, 10: ID 926. |
25 | 田新湖, 陈益生, 肖灿荣, 等. 植保无人机施药对玉米草地贪夜蛾的防治效果[J]. 农药科学与管理, 2020, 41(1): 48-53. |
TIAN X, CHEN Y, XIAO C, et al. Control efficacy of plant protection UAV spraying against fall armyworm in maize field[J]. Pesticide Science and Administration, 2020, 41(1): 48-53. | |
26 | LOU Z, XIN F, HAN X, et al. Effect of unmanned aerial vehicle flight height on droplet distribution, drift and control of cotton aphids and spider mites[J]. Agronomy-Basel, 2018, 8(9): ID187. |
27 | NAHIYOON S, CUI L, YANG D, et al. Biocidal radiuses of cycloxaprid, imidacloprid and lambda-cyhalothrin droplets controlling against cotton aphid (Aphis gossypii) using an unmanned aerial vehicle[J]. Pest Management Science, 2020, 76: 3020-3029. |
28 | ZHANG P, DENG L, LYU Q, et al. Effects of citrus tree-shape and spraying height of small unmanned aerial vehicle on droplet distribution[J]. International Journal of Agricultural and Biological Engineering, 2016, 9: 45-52. |
29 | TANG Y, HOU C, LUO S, et al. Effects of operation height and tree shape on droplet deposition in citrus trees using an unmanned aerial vehicle[J]. Computers and Electronics in Agriculture, 2018, 148: 1-7. |
30 | MARTINEZ-GUANTER J, AGUERA P, AGUERA J, et al. Spray and economics assessment of a UAV-based ultra-low-volume application in olive and citrus orchards[J]. Precision Agriculture, 2020, 21: 226-243. |
31 | 张瑞瑞, 夏浪, 陈立平, 等. 基于U-Net网络和无人机影像的松材线虫病变色木识别[J]. 农业工程学报, 2020, 36(12): 61-68. |
ZHANG R, XIA L, CHEN L, et al. Recognition of wilt wood caused by pine wilt nematode based on U-Net network and unmanned aerial vehicle images[J]. Transactions of the CSAE, 2020, 36(12): 61-68. | |
32 | YU R, LUO Y, ZHOU Q, et al. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery[J]. Forest Ecology and Management, 2021, 497: ID 119493. |
33 | 付健, 丁敬达. Citespace和VOSviewer软件的可视化原理比较[J]. 农业图书情报, 2019, 31(10): 31-37. |
FU J, DING J. Comparison of visualization principles between Citespace and VOSviewer[J]. Agricultural Library and Information, 2019, 31(10): 31-37. | |
34 | VAN ECK N J, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538. |
35 | Web of ScienceTM 核心合集引文索引导航学术之路[EB/OL]. [2021-06-07]. . |
36 | 孔繁秀, 赵艳萍. 基于Web of Science核心合集的西藏民族大学自然科学论文产出统计及分析[J]. 西藏民族大学学报(哲学社会科学版), 2018, 39(5): 174-182. |
KONG F, ZHAO Y. Statistics and analysis of natural science papers output of Xizang Minzu University based on Web of Science core collection[J]. Journal of Xizang Minzu University (Philosophy and Social Sciences Edition), 2018, 39(5): 174-182. | |
37 | 薛雷, 戴大双. 基于知识图谱的产品质量研究可视化分析[J]. 大连海事大学学报(社会科学版), 2020,19(2): 65-71. |
XUE L, DAI D. Visual analysis of product quality research based on knowledge map[J]. Journal of Dalian Maritime University (Social Science Edition), 2020,19(2): 65-71. | |
38 | 王炼. 美国民用无人机产业发展现状及联邦推进措施[J]. 全球科技经济瞭望, 2017, 32(10): 18-23. |
WANG L. Civil UAS industry development and government promotion measures in the US[J]. Global Science, Technology and Economy Outlook, 2017, 32(10): 18-23. | |
39 | 何志辉, 何雄奎, 任延昭. 植保无人机为何在我国得到迅猛发展[J]. 农药科学与管理, 2020, 41(1): 19-22. |
HE Z, HE X, REN Y. Why plant protection UAV develops rapidly in China[J]. Pesticide Science and Administration, 2020, 41(1): 19-22. | |
40 | CONGRESS US. FAA modernization and reform act[Z/OL]. [2017-02-14]. . |
41 | 何雄奎. 我国植保无人机的研究与发展应用浅析[J]. 农药科学与管理, 2018, 39(9):10-17. |
HE X. Brief analysis on the research,development and application of plant protection UAV in China[J]. Pesticide Science and Administration, 2018, 39(9):10-17. | |
42 | COLOMINA I, MOLINA P. Unmanned aerial systems for photogrammetry and remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 79-97. |
43 | ZHANG C, KOVACS J. The application of small unmanned aerial systems for precision agriculture: A review[J]. Precision Agriculture, 2012, 13(6): 693-712. |
44 | WATTS A, AMBROSIA V, HINKLEY E. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use[J]. Remote Sensing, 2012, 4: 1671-1692. |
45 | TURNER D, LUCIEER A, WATSON C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds[J]. Remote Sensing, 2012, 4: 1392-1410. |
46 | NIETHAMMER U, JAMES M, ROTHMUND S, et al. UAV-based remote sensing of the super-sauze landslide: Evaluation and results[J]. Engineering Geology, 2012, 128: 2-11. |
47 | HARWIN S, LUCIEER A. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery[J]. Remote Sensing, 2012, 4: 1573-1599. |
48 | PAJARES G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs)[J]. Photogrammetric Engineering and Remote Sensing, 2015, 81: 281-329. |
49 | BENDIG J, BOLTEN A, BENNERTZ S, et al. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging[J]. Remote Sensing, 2014, 6: 10395-10412. |
50 | ZARCO-TEJADA P, DIAZ-VARELA R, ANGILERI V, et al. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods[J]. European Journal of Agronomy, 2014, 55: 89-99. |
51 | D'OLEIRE-OLTMANNS S, MARZOLFF I, PETER K D, et al. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco[J]. Remote Sensing, 2012, 4: 3390-3416. |
52 | 潘玮, 郑鹏, 黄锦泉, 等. 基于数据清洗"DEAN"流程的健康信息领域研究热点探测[J]. 现代情报, 2018, 38(10): 73-77. |
PAN W, ZHENG P, HUANG J, et al. Research hotspot detection of health information based on the "deanprocess" of data clean[J]. Journal of Modern Information, 2018, 38(10): 73-77. | |
53 | TANG Q, ZHANG R, CHEN L, et al. Droplets movement and deposition of an eight-rotor agricultural UAV in downwash flow field[J]. International Journal of Agricultural and Biological Engineering, 2017, 10: 47-56. |
54 | TANG Q, ZHANG R, CHEN L, et al. Numerical simulation of the downwash flow field and droplet movement from an unmanned helicopter for crop spraying[J]. Computers and Electronics in Agriculture, 2020, 174: ID 105468. |
55 | CHEN S, LAN Y, ZHOU Z, et al. Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV[J]. Agronomy-Basel, 2020, 10: ID 195. |
56 | WANG J, LAN Y, ZHANG H, et al. Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions[J]. International Journal of Agricultural and Biological Engineering, 2018, 11: 5-12. |
57 | TANG Q, ZHANG R, CHEN L, et al. High-accuracy, high-resolution downwash flow field measurements of an unmanned helicopter for precision agriculture[J]. Computers and Electronics in Agriculture, 2020, 173: ID 105390. |
[1] | 戴 冕, 杨天乐, 姚照胜, 刘 涛, 孙成明. 基于无人机图像颜色与纹理特征的小麦不同生育时期生物量估算[J]. 智慧农业(中英文), 2022, 4(1): 71-83. |
[2] | 杨国峰, 何勇, 冯旭萍, 李禧尧, 张金诺, 俞泽宇. 无人机遥感监测作物病虫害胁迫方法与最新研究进展[J]. 智慧农业(中英文), 2022, 4(1): 1-16. |
[3] | 陈爱莲, 赵思健, 朱玉霞, 孙伟, 张晶, 张峭. 遥感技术在种植收入保险中的应用场景及研究进展[J]. 智慧农业(中英文), 2022, 4(1): 57-70. |
[4] | 杨进, 明博, 杨飞, 许红根, 李璐璐, 高尚, 刘朝巍, 王克如, 李少昆. 利用无人机影像监测不同生育阶段玉米群体株高的精度差异分析[J]. 智慧农业(中英文), 2021, 3(3): 129-138. |
[5] | 资乐, 臧禹, 黄俊浩, 包瑞峰, 周志艳, 肖汉祥. 植保无人机飞防助剂与杀虫剂的混配方式对二化螟防治效果影响研究[J]. 智慧农业(中英文), 2021, 3(3): 52-59. |
[6] | 唐青, 张瑞瑞, 陈立平, 李龙龙, 徐刚. 植保无人机施药数值建模关键技术与验证方法研究进展[J]. 智慧农业(中英文), 2021, 3(3): 1-21. |
[7] | 王琳, 梁健, 孟范玉, 孟炀, 张永涛, 李振海. 基于遥感与气象数据的冬小麦主产区籽粒蛋白质含量预报[J]. 智慧农业(中英文), 2021, 3(2): 15-22. |
[8] | 韩东, 王鹏新, 张悦, 田惠仁, 周西嘉. 农业干旱卫星遥感监测与预测研究进展[J]. 智慧农业(中英文), 2021, 3(2): 1-14. |
[9] | 杨菲菲, 刘升平, 诸叶平, 李世娟. 基于高光谱遥感的冬小麦涝渍胁迫识别及程度判别分析[J]. 智慧农业(中英文), 2021, 3(2): 35-44. |
[10] | . 基于无人机图像以及不同机器学习和深度学习模型的小麦倒伏率检测[J]. 智慧农业(中英文), 2021, 3(2): 23-34. |
[11] | 戴声佩, 罗红霞, 郑倩, 胡盈盈, 李海亮, 李茂芬, 禹萱, 陈帮乾. 海南岛橡胶林叶面积指数遥感估算模型比较研究[J]. 智慧农业(中英文), 2021, 3(2): 45-54. |
[12] | 黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤. 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J]. 智慧农业(中英文), 2021, 3(1): 129-143. |
[13] | 束美艳, 陈向阳, 王喜庆, 马韫韬. 基于高光谱数据的玉米叶面积指数和生物量评估[J]. 智慧农业(中英文), 2021, 3(1): 29-39. |
[14] | 张建, 谢田晋, 杨万能, 周广生. 近地遥感技术在大田作物株高测量中的研究现状与展望[J]. 智慧农业(中英文), 2021, 3(1): 1-15. |
[15] | 赵欢, 王璟璐, 廖生进, 张颖, 卢宪菊, 郭新宇, 赵春江. 基于Micro-CT的玉米籽粒显微表型特征研究[J]. 智慧农业(中英文), 2021, 3(1): 16-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||