1 | 薛钦峰. 国产大豆之困[J]. 瞭望, 2021(22): 2. |
2 | 王德军.秋作争地 玉米“力压”大豆[J].乡村科技, 2011(7): 10-11. |
3 | CARTER C A. Commodity futures markets: A survey[J]. Australian Journal of Agricultural & Resource Economics, 1999, 43(2): 209-247. |
4 | XU Y, PAN F, WANG C, et al. Dynamic price discovery process of Chinese agricultural futures markets: An empirical study based on the rolling window approach[J]. Journal of Agricultural and Applied Economics, 2019, 51(4): 664-681. |
5 | ZIEGEL E R. Time series analysis, forecasting and control[J]. Technometrics, 2012, 37(2): 238-242. |
6 | ENGLE R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica: Journal of the Econometric Society, 1982: 987-1007. |
7 | BOLLERSLEV T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327. |
8 | 刘锦源.面向农产品期货价格预测的改进LSTM方法[J]. 江苏科技信息, 2019, 36(27): 48-52. |
8 | LIU J. Research on the improved LSTM method for agricultural futures prices forecasting[J]. Jiangsu Science & Technology Information, 2019, 36(27): 48-52. |
9 | 罗千惠. 基于分解和LSTM的我国玉米期货价格预测研究[D]. 武汉: 中南财经政法大学, 2021. |
9 | LUO Q. Prediction of corn futures price based on decomposition and LSTM[D]. Wuhan: Zhongnan University of Economics and Law, 2021. |
10 | JARRAH M, SALIM N. A recurrent neural network and a discrete wavelet transform to predict the Saudi stock price trends[J]. International Journal of Advanced Computer Science and Applications, 2019, 10(4): 155-162. |
11 | 王承宇. 基于LSTM神经网络的大豆期货价格预测[D]. 重庆: 重庆大学, 2021. |
11 | WANG C. Soybean futures price prediction based on LSTM neural network[D]. Chongqing: Chongqing University, 2021. |
12 | 刘璐. 基于RNN-LSTM的黄金期货价格预测与对比研究[D]. 长春: 长春理工大学, 2021. |
12 | LIU L. Gold futures price prediction and comparative Study based on RNN-LSTM[D]. Changchun: Changchun University of Science and Technology, 2021. |
13 | SELVIN S, VINAYAKUMAR R, GOPALAKRISHNAN E A, et al. Stock price prediction using LSTM, RNN and CNN-sliding window model[C]// 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Piscataway, New York, USA: IEEE, 2017: 1643-1647. |
14 | SAUD A S, SHAKYA S. Analysis of look back period for stock price prediction with RNN variants: A case study on banking sector of NEPSE[J]. Procedia Computer Science, 2020, 167: 788-798. |
15 | MNIH V, HEESS N, GRAVES A. Recurrent models of visual attention[J]. Advances in Neural Information Processing Systems, 2014, 3: 27-35. |
16 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[J/OL]. arXiv:1706.03762[cs.CL], 2017. |
17 | GUO M, LIU Z, MU T, et al. Beyond self-attention: External attention using two linear layers for visual tasks[J/OL]. arXiv:2105.02358 [cs.CV]. 2021. |
18 | 徐丸絮, 沈吟东. 基于Attention-LSTM神经网络的公交行程时间预测[J]. 现代电子技术, 2022, 45(3): 83-87. |
18 | XU W, SHEN Y. Bus travel time prediction based on Attention-LSTM neural network[J]. Modern Electronic Technology, 2022, 45(3): 83-87. |
19 | OUYANG Z, LAI Y. Systemic financial risk early warning of financial market in China using Attention-LSTM model[J]. The North American Journal of Economics and Finance, 2021, 56: ID 101383. |
20 | 范俊明. 基于EEMD和LSTM组合模型的大豆期货价格预测研究[D]. 杭州: 浙江农林大学, 2020. |
20 | FAN J. Research on soybean futures price forecast based on EEMD and LSTM combination model[D]. Hangzhou: Zhejiang A&F University, 2020. |
21 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |