1 |
徐邢燕, 沈萍萍, 郝志龙, 等. 基于计算机视觉的茶树叶片色泽差异研究[J]. 茶叶通讯, 2019, 46(3): 276-283.
|
|
XU X Y, SHEN P P, HAO Z L, et al. Study on the color difference of tea leaves based on computer vision[J]. Journal of tea communication, 2019, 46(3): 276-283.
|
2 |
马志艳, 李辉. 基于YOLOv5的茶叶嫩芽图像识别算法研究[J]. 湖北工业大学学报, 2024, 39(1): 36-40.
|
|
MA Z Y, LI H. Research on image recognition algorithm of tea shoots based on YOLOv5[J]. Journal of Hubei university of technology, 2024, 39(1): 36-40.
|
3 |
吴雪梅, 张富贵, 吕敬堂. 基于图像颜色信息的茶叶嫩叶识别方法研究[J]. 茶叶科学, 2013, 33(6): 584-589.
|
|
WU X M, ZHANG F G, LYU J T. Research on recognition of tea tender leaf based on image color information[J]. Journal of tea science, 2013, 33(6): 584-589.
|
4 |
AMPATZIDIS Y G, VOUGIOUKAS S G, WHITING M D, et al. Applying the machine repair model to improve efficiency of harvesting fruit[J]. Biosystems engineering, 2014, 120: 25-33.
|
5 |
何梁, 薛龙, 郑建鸿 等. 莲蓬采摘点与采摘姿态计算算法[J]. 科学技术与工程, 2023, 23(16): 6845-6852.
|
|
HE L, XUE L, ZHENG J Het al. Picking point and picking posture algorithm of lotus pods[J].Science technology and engineering, 2023, 23(16): 6845-6852.
|
6 |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 833-851.
|
7 |
李惠鹏, 李长勇, 李贵宾, 等.基于深度学习的多品种鲜食葡萄采摘点定位[J]. 中国农机化学报, 2022, 43(12):155-161.
|
|
LI H P, LI C Y, LI G B, et al. Picking point positioning of multi-variety table grapes based on deep-learning[J]. Journal of Chinese agricultural mechanization, 2022, 43 (12): 155-161.
|
8 |
李艳文, 左朝阳, 王登奎, 等. 基于改进型SegNet的苹果采摘点分割算法研究[J]. 燕山大学学报, 2022, 46(5): 455-460, 470.
|
|
LI Y W, ZUO C Y, WANG D K, et al. Apple picking point segmentation based on improved SegNet[J].Journal of Yanshan university, 2022, 46(5): 455-460, 470.
|
9 |
SANTOS T T, GEBLER L. A methodology for detection and localization of fruits in apples orchards from aerial images[EB/OL]. arxiv: 2110.12331, 2021.
|
10 |
GIMÉNEZ-GALLEGO J, MARTINEZ-DEL-RINCON J, GONZÁLEZ-TERUEL J D, et al. On-tree fruit image segmentation comparing Mask R-CNN and Vision Transformer models. Application in a novel algorithm for pixel-based fruit size estimation[J]. Computers and electronics in agriculture, 2024, 222: ID 109077.
|
11 |
黄家才, 唐安, 张铎, 等. 基于自适应标记分水岭算法的茶叶嫩芽图像分割方法[J]. 南京工程学院学报(自然科学版), 2022, 20(4): 6-11.
|
|
HUANG J C, TANG A, ZHANG D, et al. Image segmentation of tea buds based on adaptive marked watershed algorithm[J]. Journal of Nanjing institute of technology (natural science edition), 2022, 20(4): 6-11.
|
12 |
胡和平, 吴明晖, 洪孔林, 等. 基于改进YOLOv5s的茶叶嫩芽分级识别方法[J]. 江西农业大学学报, 2023, 45(5): 1261-1272.
|
|
HU H P, WU M H, HONG K L, et al. Classification and recognition method for tea buds based on improved YOLOv5s[J]. Acta agriculturae universitatis jiangxiensis, 2023, 45(5): 1261-1272.
|
13 |
LIU F, WANG S, PANG S, et al. Detection and recognition of tea buds by integrating deep learning and image-processing algorithm[J]. Journal of food measurement and characterization, 2024, 18(4): 2744-2761.
|
14 |
KARUNASENA G, PRIYANKARA H. Tea bud leaf identification by using machine learning and image processing techniques[J]. International journal of scientific & engineering research, 2020, 11(8): 624-628.
|
15 |
JUNAGADE S, CHOUDHURY S B, SARANGI S, et al. Estimation of plucking points with overhead imaging in tea-a case study[C]// 2022 IEEE Region 10 Symposium (TENSYMP). Piscataway, New Jersey, USA: IEEE, 2022: 1-6.
|
16 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: ID 00474.
|
17 |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: ID 01155.
|
18 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. arXiv: ID 1706.05587, 2017.
|
19 |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241.
|
20 |
CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017:ID 195.
|
21 |
向煜, 黄志. 一种基于改进的Unet网络的遥感影像建筑物分割方法[J]. 城市勘测, 2024(1): 109-113.
|
|
XIANG Y, HUANG Z. A building segmentation method for remote sensing image based on improved unet network[J]. Urban geotechnical investigation & surveying, 2024(1): 109-113.
|
22 |
卢志刚, 陈芳淼, 袁超, 等. 采用Ⅰ-PSPNet语义分割模型的高分辨率遥感影像某特种植物种植地块提取研究[J]. 遥感技术与应用, 2024, 39(1): 222-233.
|
|
LU Z G, CHEN F M, YUAN C, et al. Research on extracting special plant planting plots from high-resolution remote sensing images using Ⅰ-PSPNet semantic segmentation model[J]. Remote sensing technology and application, 2024, 39(1): 222-233.
|
23 |
路秋叶, 刘法军, 丁志国, 等. 基于改进DeepLabV3+深度学习模型的冬小麦种植面积提取研究[J]. 无线电工程, 2023, 53(11): 2564-2572.
|
|
LU Q Y, LIU F J, DING Z G, et al. Research on extraction of winter wheat planting area based on improved DeepLabV3+[J]. Radio engineering, 2023, 53(11): 2564-2572.
|