欢迎您访问《智慧农业(中英文)》官方网站! English

Smart Agriculture ›› 2025, Vol. 7 ›› Issue (3): 160-172.doi: 10.12133/j.smartag.SA202502001

• 信息处理与决策 • 上一篇    

基于改进HRNet的高精度鱼类姿态估计方法

彭秋珺1,2,3,4,5, 李蔚然1,2,3,4,5, 刘业强1,2,3,4,5, 李振波1,2,3,4,5()   

  1. 1. 中国农业大学国家数字渔业创新中心,北京 100083,中国
    2. 中国农业大学 信息与电气工程学院,北京 100083,中国
    3. 农业农村部智慧养殖技术重点实验室,北京 100083,中国
    4. 农业农村部信息化标准化重点实验室,北京 100083,中国
    5. 北京市农业物联网工程技术研究中心,北京 100083,中国
  • 收稿日期:2025-01-25 出版日期:2025-05-30
  • 基金项目:
    国家重点研发计划项目(2020YFD0900204); 新一代人工智能国家科技重大专项(2021ZD0113805); 北京市智慧农业创新团队项目(BAIC10-2024)
  • 作者简介:

    彭秋珺,硕士研究生,研究方向为计算机视觉。E-mail:

  • 通信作者:
    李振波,博士,教授,研究方向为计算机视觉。E-mail:

High-Precision Fish Pose Estimation Method Based on Improved HRNet

PENG Qiujun1,2,3,4,5, LI Weiran1,2,3,4,5, LIU Yeqiang1,2,3,4,5, LI Zhenbo1,2,3,4,5()   

  1. 1. National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China
    2. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
    3. Key Laboratory of Smart Farming for Aquatic Animal and Livestock, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
    4. Key Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
    5. Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, Beijing 100083, China
  • Received:2025-01-25 Online:2025-05-30
  • Foundation items:National Key Research and Development Program of China(2020YFD0900204); National Science and Technology Major Project(2021ZD0113805); Beijing Smart Agriculture Innovation Consortium Project(BAIC10-2024)
  • About author:

    PENG Qiujun, E-mail:

  • Corresponding author:
    LI Zhenbo, E-mail:

摘要:

【目的/意义】 鱼类姿态估计是获取鱼类生理信息的重要手段,对于水产养殖中的健康监测具有重要意义。鱼类在受到损伤时通常表现出异常行为,并伴随身体部位位置的变化。此外,鱼类游动过程中的姿态和方向具有不确定性,且游速较快,这对鱼类姿态估计研究提出了挑战。因此,本研究提出了一种名为HPFPE(High-Precision Fish Pose Estimation)的鱼类姿态估计模型,旨在精准捕捉鱼类姿态并准确识别其关键点。 【方法】 该模型一方面将注意力机制模块(Convolutional Block Attention Module, CBAM)集成到HRNet(High-Resolution Net)框架中,在不增加计算复杂度的前提下提高模型预测精度。另一方面,模型通过融合空洞卷积来扩大感受野,提取更广泛的空间上下文信息,从而进一步提升姿态估计的准确性。 【结果和讨论】 在斑石鲷数据上,与HRNet方法相比,HPFPE在不同骨干网络和输入尺寸下的平均准确率分别提高了0.62、1.35、1.76和1.28个百分点,平均召回率分别提升了0.85、1.50、1.40和1.00个百分点。此外,HPFPE在性能上也优于DeepPose、CPM(Convolutional Pose Machine)、SCNet(Self-Calibrated Convolutions Net)和Lite-HRNet。在观赏鱼数据上,HPFPE的平均精度和平均召回率分别达到52.96%和59.50%,显著优于其他对比方法。 【结论】 本研究提出的HPFPE模型能够有效估计鱼类姿态,为鱼类行为识别等应用提供重要参考。

关键词: 水产养殖, 计算机视觉, 鱼类姿态估计, 关键点, 注意力机制

Abstract:

[Objective] Fish pose estimation (FPE) provides fish physiological information, facilitating health monitoring in aquaculture. It aids decision-making in areas such as fish behavior recognition. When fish are injured or deficient, they often display abnormal behaviors and noticeable changes in the positioning of their body parts. Moreover, the unpredictable posture and orientation of fish during swimming, combined with the rapid swimming speed of fish, restrict the current scope of research in FPE. In this research, a FPE model named HPFPE is presented to capture the swimming posture of fish and accurately detect their key points. [Methods] On the one hand, this model incorporated the CBAM module into the HRNet framework. The attention module enhanced accuracy without adding computational complexity, while effectively capturing a broader range of contextual information. On the other hand, the model incorporated dilated convolution to increase the receptive field, allowing it to capture more spatial context. [Results and Discussions] Experiments showed that compared with the baseline method, the average precision (AP) of HPFPE based on different backbones and input sizes on the oplegnathus punctatus datasets had increased by 0.62, 1.35, 1.76, and 1.28 percent point, respectively, while the average recall (AR) had also increased by 0.85, 1.50, 1.40, and 1.00, respectively. Additionally, HPFPE outperformed other mainstream methods, including DeepPose, CPM, SCNet, and Lite-HRNet. Furthermore, when compared to other methods using the ornamental fish data, HPFPE achieved the highest AP and AR values of 52.96%, and 59.50%, respectively. [Conclusions] The proposed HPFPE can accurately estimate fish posture and assess their swimming patterns, serving as a valuable reference for applications such as fish behavior recognition.

Key words: aquaculture, computer vision, fish pose estimation, key point, attention mechanism

中图分类号: