[1] |
PENG Q, LI W, LI Z. Review of fish behavior recognition methods based on artificial intelligence[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(S1): 283-295.
|
[2] |
ZHENG C, WU W H, CHEN C, et al. Deep learning-based human pose estimation: A survey[J]. ACM computing surveys, 2024, 56(1): 1-37.
|
[3] |
SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 5686-5696.
|
[4] |
LIU J J, HOU Q B, CHENG M M, et al. Improving convolutional networks with self-calibrated convolutions[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 10093-10102.
|
[5] |
YU C Q, XIAO B, GAO C X, et al. Lite-HRNet: A lightweight high-resolution network[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 10435-10445.
|
[6] |
YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]// Proceedings of the AAAI conference on artificial intelligence. Palo Alto, California USA: AAAI Press. 2018, 32(1): 7444-7452.
|
[7] |
MARKOVITZ A, SHARIR G, FRIEDMAN I, et al. Graph embedded pose clustering for anomaly detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 10536-10544.
|
[8] |
DAS S, SHARMA S, DAI R, et al. VPN: Learning video-pose embedding for activities of daily living[C]// Computer Vision – ECCV 2020. Cham, Germany: Springer International Publishing, 2020: 72-90.
|
[9] |
YANG X T, ZHANG S, LIU J T, et al. Deep learning for smart fish farming: Applications, opportunities and challenges[J]. Reviews in aquaculture, 2021, 13(1): 66-90.
|
[10] |
YUE J, YANG H H, JIA S X, et al. A multi-scale features-based method to detect Oplegnathus [J]. Information processing in agriculture, 2021, 8(3): 437-445.
|
[11] |
WANG H R, CHEN Y Y, CHAI Y Q, et al. Image segmentation method combined with VoVNetv2 and shuffle attention mechanism for fish feeding in aquaculture[J]. Smart agriculture, 2023, 5(4): 137-149.
|
[12] |
LI W R, LI F, LI Z B. CMFTNet: Multiple fish tracking based on counterpoised JointNet[J]. Computers and electronics in agriculture, 2022, 198: ID 107018.
|
[13] |
ZHAO Y Y, LI W R, LI Y M, et al. LFCNet: A lightweight fish counting model based on density map regression[J]. Computers and electronics in agriculture, 2022, 203: ID 107496.
|
[14] |
BANAN A, NASIRI A, TAHERI-GARAVAND A. Deep learning-based appearance features extraction for automated carp species identification[J]. Aquacultural engineering, 2020, 89: ID 102053.
|
[15] |
DU Z Z, XU X B, BAI Z Z, et al. Feature fusion strategy and improved GhostNet for accurate recognition of fish feeding behavior[J]. Computers and electronics in agriculture, 2023, 214: ID 108310.
|
[16] |
LI B B, YUE J, JIA S X, et al. Recognition of abnormal body surface characteristics of Oplegnathus punctatus [J]. Information processing in agriculture, 2022, 9(4): 575-585.
|
[17] |
HU W C, YANG X T, MA P C, et al. DCA-MVIT: Fused DSGated convolution and CA attention for fish feeding behavior recognition in recirculating aquaculture systems[J]. Aquaculture, 2025, 598: ID 742008.
|
[18] |
MATHIS A, MAMIDANNA P, CURY K M, et al. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning[J]. Nature neuroscience, 2018, 21(9): 1281-1289.
|
[19] |
WU X, HUANG J P, WANG L M. Pose estimation-based visual perception system for analyzing fish swimming[J]. IEEE sensors journal, 2024, 24(8): 13293-13303.
|
[20] |
WANG L, ZOU H Q, CHEN S H. Fish identification and tracking based on pose estimation[C]// 2024 IEEE 19th Conference on Industrial Electronics and Applications (ICIEA). Piscataway, New Jersey, USA: IEEE, 2024.
|
[21] |
CUI H P, QIN C X, MA Z Y. Fish key feature point detection and sign identification based on deep learning[J]. Journal of Chinese agricultural mechanization, 2024, 45(6): 201-207.
|
[22] |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. arXiv: 1511.07122, 2015.
|
[23] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block attention module[C]// Computer Vision – ECCV 2018. Cham, Germany: Springer International Publishing, 2018: 3-19.
|
[24] |
KAN Z H, CHEN S S, ZHANG C, et al. Self-correctable and adaptable inference for generalizable human pose estimation[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 5537-5546.
|
[25] |
HUANG L Z, LI Y L, TIAN H B, et al. Semi-supervised 2D human pose estimation driven by position inconsistency pseudo label correction module[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 693-703.
|
[26] |
WANG H X, ZHOU L, CHEN Y Y, et al. Regularizing vector embedding inBottom-up human pose estimation[C]// Computer Vision – ECCV 2022. Cham, Germany: Springer, 2022: 107-122.
|