1 |
李就好, 林乐坚, 田凯, 等. 改进Faster R-CNN的田间苦瓜叶部病害检测[J]. 农业工程学报, 2020, 36(12): 179-185.
|
|
LI J H, LIN L J, TIAN K, et al. Detection of leaf diseases of balsam pear in the field based on improved Faster R-CNN[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(12): 179-185.
|
2 |
LUO D H, XUE Y J, DENG X R, et al. Citrus diseases and pests detection model based on self-attention YOLOV8[J]. IEEE access, 2023, 11: 139872-139881.
|
3 |
杨锋, 姚晓通. 基于改进YOLOv8的小麦叶片病虫害检测轻量化模型[J]. 智慧农业(中英文), 2024, 6(1): 147-157.
|
|
YANG F, YAO X T. Lightweighted wheat leaf diseases and pests detection model based on improved YOLOv8[J]. Smart agriculture, 2024, 6(1): 147-157.
|
4 |
PRABHAKAR M, PURUSHOTHAMAN R, AWASTHI D P. Deep learning based assessment of disease severity for early blight in tomato crop[J]. Multimedia tools and applications, 2020, 79(39): 28773-28784.
|
5 |
时雷, 杨程凯, 雷镜楷, 等. 基于改进YOLOv8s的小麦小穗赤霉病检测研究[J]. 农业机械学报, 2024, 55(7): 280-289.
|
|
SHI L, YANG C K, LEI J K, et al. Wheat spikelet detection of Fusarium head blight based on improved YOLOv8s[J]. Transactions of the Chinese society for agricultural machinery, 2024, 55(7): 280-289.
|
6 |
WANG A, CHEN H, LIU L H, et al. YOLOv10: Real-time end-to-end object detection[EB/OL]. arXiv: 2405.14458, 2024.
|
7 |
CHU X X, LI L, ZHANG B. Make RepVGG greater again: A quantization-aware approach[EB/OL]. arXiv: 2212.01593, 2022.
|
8 |
DING X H, ZHANG X Y, MA N N, et al. RepVGG: Making VGG-style ConvNets great again[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 13733-13742.
|
9 |
YANG L, ZHANG R Y, LI L, et al. Simam: A simple, parameter-free attention module for convolutional neural networks[C]// International conference on machine learning. New York, USA: PMLR, 2021: 11863-11874.
|
10 |
LIU W Z, LU H, FU H T, et al. Learning to upsample by learning to sample[C]// 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2023: 6027-6037.
|
11 |
李淇, 石艳, 范桃. 改进YOLOv8n的O型密封圈表面缺陷检测算法研究[J]. 计算机工程与应用, 2024, 60(18): 126-135.
|
|
LI Q, SHI Y, FAN T. Research on O-ring surface defect detection algorithm based on improved YOLOv8n[J]. Computer engineering and applications, 2024, 60(18): 126-135.
|
12 |
刘雅楠, 李维乾. 融合ECA机制的轻量化YOLOv4检测模型[J]. 计算机技术与发展, 2023, 33(7): 146-153.
|
|
LIU Y N, LI W Q. Lightweight YOLOv4 detection model incorporating ECA mechanism[J]. Computer technology and development, 2023, 33(7): 146-153.
|
13 |
宋鹏飞, 吴云. DenseNet和SeNet融合残差结构的DR分类方法[J]. 计算机应用研究, 2024, 41(3): 928-932, 950.
|
|
SONG P F, WU Y. DR classification methods for DenseNet and SeNet fusion residue structures[J]. Application research of computers, 2024, 41(3): 928-932, 950.
|
14 |
方汀, 刘艺超, 唐哲, 等. 基于高效通道注意力模块(ECA)和YOLOv5的图像检测方法研究[J]. 科学技术创新, 2023(8): 88-91.
|
|
FANG T, LIU Y C, TANG Z, et al. An image detection method based on ECA and YOLOv5[J]. Scientific and technological innovation, 2023(8): 88-91.
|
15 |
MOHAMETH F, CHEN B C, SADA K A. Plant disease detection with deep learning and feature extraction using plant village[J]. Journal of computer and communications, 2020, 8(6): 10-22.
|
16 |
SUN H, NICHOLAUS I T, FU R, et al. YOLO-FMDI: A lightweight YOLOv8 focusing on a multi-scale feature diffusion interaction neck for tomato pest and disease detection[J]. Electronics, 2024, 13(15): ID 2974.
|
17 |
刘诗怡, 胡滨, 赵春. 基于改进YOLOv7的黄瓜叶片病虫害检测与识别[J]. 农业工程学报, 2023, 39(15): 163-171.
|
|
LIU S Y, HU B, ZHAO C. Detection and identification of cucumber leaf diseases based improved YOLOv7[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(15): 163-171.
|