1 | YADAV S, SENGAR N, SINGH A, et al. Identification of disease using deep learning and evaluation of bacteriosis in peach leaf[J]. Ecological Informatics, 2021, 61: ID 101247. | 2 | GENE-MOLA J, VILAPLANA V, ROSELL-POLO J R, et al. Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities[J]. Computers and Electronics in Agriculture, 2019, 162: 689-698. | 3 | NGUYEN T T, VANDEVOORDE K, WOUTERS N, et al. Detection of red and bicoloured apples on tree with an RGB-D camera[J]. Biosystems Engineering, 2016, 146: 33-44. | 4 | LIU X, JIA W, RUAN C, et al. The recognition of apple fruits in plastic bags based on block classification[J]. Precision Agriculture, 2018, 19(4): 735-749. | 5 | LIU T, EHSANI R, TOUDESHKI A, et al. Identifying immature and mature pomelo fruits in trees by elliptical model fitting in the Cr-Cb color space[J]. Precision Agriculture, 2019, 20(1): 138-156. | 6 | LIU Y, CHEN B, QIAO J. Development of a machine vision algorithm for recognition of peach fruit in a natural scene[J]. Transactions of the ASABE, 2011, 54(2): 695-702. | 7 | WILLIAMS H A M, JONES M H, NEJATI M, et al. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms[J]. Biosystems Engineering, 2019, 181: 140-156. | 8 | NAVAS E, FERNANDEZ R, SEPULVEDA D, et al. Soft grippers for automatic crop harvesting: A review[J]. Sensors, 2021, 21(8): ID 2689. | 9 | TU S, PANG J, LIU H, et al. Passion fruit detection and counting based on multiple scale faster R-CNN using RGB-D images[J]. Precision Agriculture, 2020, 21(5): 1072-1091. | 10 | H?NI N, ROY P, ISLER V. A comparative study of fruit detection and counting methods for yield mapping in apple orchards[J]. Journal of Field Robotics, 2020, 37(2): 263-282. | 11 | LU S, CHEN W, ZHANG X, et al. Canopy-attention-YOLOv4-based immature/mature apple fruit detection on dense-foliage tree architectures for early crop load estimation[J]. Computers and Electronics in Agriculture, 2022, 193: ID 106696. | 12 | LI X, PAN J, XIE F, et al. Fast and accurate green pepper detection in complex backgrounds via an improved YOLOv4-tiny model[J]. Computers and Electronics in Agriculture, 2021, 191: ID 106503. | 13 | JIANG M, SONG L, WANG Y, et al. Fusion of the YOLOv4 network model and visual attention mechanism to detect low-quality young apples in a complex environment[J]. Precision Agriculture, 2022, 23(2): 559-577. | 14 | HUANG H, HUANG T, LI Z, et al. Design of citrus fruit detection system based on mobile platform and edge computer device[J]. Sensors, 2021, 22(1): ID 59. | 15 | FU L, GAO F, WU J, et al. Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review[J]. Computers and Electronics in Agriculture, 2020, 177: ID 105687. | 16 | SA I, GE Z, DAYOUB F, et al. Deepfruits: A fruit detection system using deep neural networks[J]. Sensors, 2016, 16(8): ID 1222. | 17 | ARAD B, BALENDONCK J, BARTH R, et al. Development of a sweet pepper harvesting robot[J]. Journal of Field Robotics, 2020, 37(6): 1027-1039. | 18 | SUO R, GAO F, ZHOU Z, et al. Improved multi-classes kiwifruit detection in orchard to avoid collisions during robotic picking[J]. Computers and Electronics in Agriculture, 2021, 182: ID 106052. | 19 | TIAN Y, YANG G, WANG Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-v3 model[J]. Computers and Electronics in Agriculture, 2019, 157: 417-426. | 20 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2016: 779-788. | 21 | REDMON J, FARHADI A. YOLOv3: An incremental improvement[J/OL]. arXiv:1804.02767[cs.CV], 2018. | 22 | REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2017: 7263-7271. | 23 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J/OL]. arXiv: 2004.10934[cs.CV], 2020. | 24 | YAN B, FAN P, LEI X, et al. A real-time apple targets detection method for picking robot based on improved YOLOv5[J]. Remote Sensing, 2021, 13(9): ID 1619. | 25 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2018: 8759-8768. | 26 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2021: 13713-13722. | 27 | FANG L, WU Y, LI Y, et al. Ginger seeding detection and shoot orientation discrimination using an improved YOLOv4-LITE network[J]. Agronomy, 2021, 11(11): ID 2328. | 28 | SHI C, LIN L, SUN J, et al. A lightweight YOLOv5 transmission line defect detection method based on coordinate attention[C]// 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). Piscataway, New York, USA: IEEE, 2022, 6: 1779-1785. | 29 | ZHA M, QIAN W, YI W, et al. A lightweight YOLOv4-based forestry pest detection method using coordinate attention and feature fusion[J]. Entropy, 2021, 23(12): 1587. | 30 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2018: 7132-7141. | 31 | ZHANG Y, YU J, CHEN Y, et al. Real-time strawberry detection using deep neural networks on embedded system (RTSD-net): An edge AI application[J]. Computers and Electronics in Agriculture, 2022, 192: ID 106586. | 32 | CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2017: 1251-1258. | 33 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J/OL]. arXiv: 2004.10934[cs.CV], 2020. | 34 | ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Piscataway, New York, USA: IEEE, 2020, 34(7): 12993-13000. | 35 | POWERS D M W. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation[J/OL]. arXiv: 2010.16061[cs.LG], 2020. | 36 | GE Z, LIU S, WANG F, et al. YOLOx: Exceeding yolo series in 2021[J/OL]. arXiv: 2107.08430[cs.CV], 2021. | 37 | LONG X, DENG K, WANG G, et al. PP-YOLO: An effective and efficient implementation of object detector[J/OL]. arXiv: 2007.12099[cs.CV], 2020. | 38 | TAN M, PANG R, LE Q V. EfficientDet: Scalable and efficient object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2020: 10781-10790. |
|