| [1] |
郑艳洁, 郭晓晓. 流通业效率、数字经济发展对农产品价格波动的影响[J]. 商业经济研究, 2023, (1): 67-70.
|
|
ZHENG Y J, GUO X X. Research on the influence of the efficiency of circulation industry and digital economy on the price fluctuation of agricultural products[J]. Journal of commercial economics, 2023, (1): 67-70.
|
| [2] |
许世卫, 李乾川, 栾汝朋, 等. 农产品市场监测预警深度学习智能预测方法[J]. 智慧农业(中英文), 2025, 7(1): 57-69.
|
|
XU S W, LI Q C, LUAN R P, et al. Agricultural market monitoring and early warning: An integrated forecasting approach based on deep learning[J]. Smart agriculture, 2025, 7(1): 57-69.
|
| [3] |
陈雯, 谢云. 经济政策不确定性对中国农产品价格的影响[J]. 农业展望, 2024, 20(10): 62-68.
|
|
CHEN W, XIE Y. Impact of economic policy uncertainty on the prices of agricultural products in China[J]. Agricultural outlook, 2024, 20(10): 62-68.
|
| [4] |
夏如玉, 王梓桥. 基于ARIMA模型对重庆市GDP预测分析[J]. 中国储运, 2022(8): 93-94.
|
|
XIA R Y, WANG Z Q. Prediction and analysis of Chongqing GDP based on ARIMA model[J]. China storage & transport, 2022(8): 93-94.
|
| [5] |
黄文玲, 郑晓颖, MCCARTHYBREDA, 等. 基于ARIMA模型对广东省生猪价格的短期预测[J]. 中国畜牧杂志, 2018, 54(12): 119-123.
|
|
HUANG W L, ZHENG X Y, MCCARTHY B, et al. Short term prediction of the price of live pigs in Guangdong province based on ARIMA model[J]. Chinese journal of animal science, 2018, 54(12): 119-123.
|
| [6] |
胡杨, 张朝阳. 基于ARIMA模型的河北省玉米价格预测[J]. 农业与技术, 2020, 40(23): 149-152.
|
|
HU Y, ZHANG C Y. Forecast of corn price in Hebei province based on ARIMA model[J]. Agriculture and technology, 2020, 40(23): 149-152.
|
| [7] |
ZHOU L W. Application of ARIMA model on prediction of China's corn market[J]. Journal of physics: Conference series, 2021, 1941(1): ID 012064.
|
| [8] |
ABDUL A K, TAUFIK A H, IMBARINE B. World edible oil prices prediction: Evidence from mix effect of ever difference on Box-Jenkins approach[J]. Journal of business and retail management research, 2016, 10(3): 11-23.
|
| [9] |
ADEETH CARIAPPA A G, KATHAYAT B, KARTHIGA S, et al. Price analysis and forecasting for decision making: Insights from wheat markets in India[J]. The Indian journal of agricultural sciences, 2020, 90(5): 979-984.
|
| [10] |
DAREKAR A, REDDY A A. Forecasting of common paddy prices in India[J]. SSRN electronic journal, 2017: 71-75.
|
| [11] |
吕星辰. 基于网络舆情影响的小宗农产品价格预测研究[D]. 哈尔滨: 东北农业大学, 2023.
|
|
LÜ X C. Small-scale agricultural product price forecast based on the influence of network public opinions[D]. Harbin: Northeast Agricultural University, 2023.
|
| [12] |
王溯, 胡长情. 基于ARCH类模型的农产品价格波动特征研究[J]. 中国林业经济, 2023, (2): 80-84.
|
|
WANG S, HU C Q. Research on the characteristics of agricultural product price fluctuation based on ARCH model[J]. China forestry economics, 2023, (2): 80-84.
|
| [13] |
MAHMOUD SAYED AGBO H. Forecasting agricultural price volatility of some export crops in Egypt using ARIMA/GARCH model[J]. Review of economics and political science, 2023, 8(2): 123-133.
|
| [14] |
WEI X, ZHANG L, YANG H, et al. Machine learning for pore-water pressure time-series prediction: Application of recurrent neural networks[J]. Geoscience frontiers. 2021, 12(1): 453-467.
|
| [15] |
ASLAM A, FARHAN S. Enhancing rice yield prediction: A deep fusion model integrating ResNet50-LSTM with multi source data[J]. PeerJ computer science, 2024, 10: ID e2219.
|
| [16] |
MADHURI J, INDIRAMMA M, NAGARATHNA N. M-Bi-GRU-CNN: A hybrid deep learning model with optimized feature selection for enhanced crop yield prediction[J]. Multimedia tools and applications, 2025, 84: 39787-39811.
|
| [17] |
李哲敏, 许世卫, 崔利国, 等. 基于动态混沌神经网络的预测研究: 以马铃薯时间序列价格为例[J]. 系统工程理论与实践, 2015, 35(8): 2083-2091.
|
|
LI Z M, XU S W, CUI L G, et al. Prediction study based on dynamic chaotic neural network: Taking potato time-series prices as an example[J]. Systems engineering-theory & practice, 2015, 35(8): 2083-2091.
|
| [18] |
CHOUDHARY K, JHA G K, DAS P, et al. Forecasting potato price using ensemble artificial neural networks[J]. Indian journal of extension education, 2019, 55(1): 73-77.
|
| [19] |
王桂红, 潘栋, 刘向锋. 基于门控循环单元网络的农产品价格预测模型构建[J]. 沈阳师范大学学报(自然科学版), 2022, 40(5): 451-456.
|
|
WANG G H, PAN D, LIU X F. Construction of agricultural product price forecasting model based on gated recurrent unit[J]. Journal of Shenyang normal university (natural science edition), 2022, 40(5): 451-456.
|
| [20] |
胡彦军, 张平川, 尚峥, 等. 基于深度学习的大蒜价格预测研究[J]. 河南科技学院学报(自然科学版), 2023, 51(3): 35-42.
|
|
HU Y J, ZHANG P C, SHANG Z, et al. Research on garlic price prediction based on deep learning[J]. Journal of Henan institute of science and technology (natural science edition), 2023, 51(3): 35-42.
|
| [21] |
XU X J, ZHANG Y. Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat[J]. Intelligent systems in accounting, finance and management, 2022, 29(3): 169-181.
|
| [22] |
XU X J, ZHANG Y. Corn cash price forecasting with neural networks[J]. Computers and electronics in agriculture, 2021, 184: ID 106120.
|
| [23] |
LATIFI Z, FAMI H S. Forecasting wheat production in Iran using time series technique and artificial neural network[J]. Journal of agricultural science and technology, 2022, 24(2): 261-273.
|
| [24] |
袁铭涓, 孙若莹. 基于LSTM神经网络的大宗农产品价格预测研究[J]. 海峡科技与产业, 2021, 34(11): 43-47, 60.
|
|
YUAN M J, SUN R Y. Research on price prediction of bulk agricultural products based on LSTM neural network[J]. Technology and industry across the Straits, 2021, 34(11): 43-47, 60.
|
| [25] |
张璇. 基于LSTM的河南省花生价格预测研究[D]. 郑州: 华北水利水电大学, 2021.
|
|
ZHANG X. Research on peanut price forecast in Henan province based on long short-term memory[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021.
|
| [26] |
贾宁, 郑纯军. 基于LSTM-DA神经网络的农产品价格指数短期预测模型[J]. 计算机科学, 2019, 46(S2): 62-65, 71.
|
|
JIA N, ZHENG C J. Short-term forecasting model of agricultural product price index based on LSTM-DA neural network[J]. Computer science, 2019, 46(S2): 62-65, 71.
|
| [27] |
吴培, 李哲敏. 中国猪肉价格预测研究: 基于ARIMA-GM-RBF组合模型的分析[J]. 价格理论与实践, 2019(1): 75-78.
|
|
WU P, LI Z M. Forecast researchon China's pork price based on the ARIMA-GM-RBF hybrid model[J]. Price: Theory & practice, 2019(1): 75-78.
|
| [28] |
ZHANG Q H, YAN H Z, NING J, et al. A deep learning framework for forecasting pork import prices using PPI_IPD index[C]// Proceedings of the 2023 International Conference on Intelligent Computing and Its Emerging Applications. New York, USA: ACM, 2023: 167-169.
|
| [29] |
CHEN P, YE H Z. Short-term forecast of agricultural prices using CNN+LSTM[C]// Proceedings of the 7th International Conference on Intelligent Information Processing. New York, USA: ACM, 2022.
|
| [30] |
曹新悦, 贺春林, 崔梦天. 基于X12-ARIMA和LSTM组合模型的城市蔬菜价格波动规律及预测[J]. 西南民族大学学报(自然科学版), 2021, 47(4): 418-425.
|
|
CAO X Y, HE C L, CUI M T. Construction of urban vegetable price fluctuation prediction model based on X12-ARIMA and LSTM[J]. Journal of southwest Minzu university (natural science edition), 2021, 47(4): 418-425.
|
| [31] |
NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: Long-term forecasting with transformers[EB/OL]. arXiv: 2211.14730, 2022.
|
| [32] |
LIU Y, HU T, ZHANG H, et al. Itransformer: Inverted transformers are effective for time series forecasting[EB/OL]. arXiv: 2310.06625, 2024.
|
| [33] |
HAN L, CHEN X Y, YE H J, et al. Softs: Efficient multivariate time series forecasting with series-core fusion[EB/OL]. arXiv: 2404.14197, 2024.
|
| [34] |
DAS A, KONG W, LEACH A, et al. Long-term forecasting with tide: Time-series dense encoder[EB/OL]. arXiv: 2304.08424, 2023.
|
| [35] |
JIN M, WANG S, MA L, et al. Time-LLM: Time series forecasting by reprogramming large language models[EB/OL]. arXiv: 2310.01728, 2024.
|
| [36] |
曹淑欣, 许学斌, 路龙宾, 等. 融合注意力机制与残差网络的人耳识别方法[J]. 光电子·激光, 2023, 34(4): 378-386.
|
|
CAO S X, XU X B, LU L B, et al. Ear recognition method combining attention mechanism and residual network[J]. Journal of optoelectronics·laser, 2023, 34(4): 378-386.
|