1 |
郑艳洁, 郭晓晓 . 流通业效率、数字经济发展对农产品价格波动的影响[J]. 商业经济研究, 2023, (1): 67-70.
|
|
ZHENG Y J , GUO X X . Research on the influence of the efficiency of circulation industry and digital economy on the price fluctuation of agricultural products[J]. Journal of Commercial Economics, 2023, (1): 67-70.
|
2 |
许世卫, 李乾川, 栾汝朋, 等 . 农产品市场监测预警深度学习智能预测方法[J]. 智慧农业(中英文), 2025, 7(1): 57-69.
|
|
XU S W , LI Q C , LUAN R P , et al . Agricultural market monitoring and early warning: An integrated forecasting approach based on deep learning[J]. Smart agriculture, 2025, 7(1): 57-69.
|
3 |
陈雯, 谢云 . 经济政策不确定性对中国农产品价格的影响[J]. 农业展望, 2024, 20(10): 62-68.
|
|
CHEN W , XIE Y . Impact of economic policy uncertainty on the prices of agricultural products in China[J]. Agricultural Outlook, 2024, 20(10): 62-68.
|
4 |
夏如玉, 王梓桥 . 基于ARIMA模型对重庆市GDP预测分析[J]. 中国储运, 2022(8): 93-94.
|
|
XIA R Y , WANG Z Q . Prediction and analysis of Chongqing GDP based on ARIMA model[J]. China storage & transport, 2022(8): 93-94.
|
5 |
黄文玲, 郑晓颖, McCarthyBreda, 等 . 基于ARIMA模型对广东省生猪价格的短期预测[J]. 中国畜牧杂志, 2018, 54(12): 119-123.
|
|
HUANG W L , ZHENG X Y , MCCARTHY B , et al . Short term prediction of the price of live pigs in Guangdong Province based on ARIMA model[J]. Chinese journal of animal science, 2018, 54(12): 119-123.
|
6 |
胡杨, 张朝阳 . 基于ARIMA模型的河北省玉米价格预测[J]. 农业与技术, 2020, 40(23): 149-152.
|
|
HU Y , ZHANG C /Z)Y . Forecast of corn price in Hebei Province based on ARIMA model[J]. Agriculture and technology, 2020, 40(23): 149-152.
|
7 |
ZHOU L W . Application of ARIMA model on prediction of China's corn market[J]. Journal of physics: conference series, 2021, 1941(1): ID 012064.
|
8 |
ABDUL A K , TAUFIK A H , IMBARINE B . World edible oil prices prediction: Evidence from mix effect of ever difference on Box-Jenkins approach[J]. Journal of business and retail management research, 2016, 10(3): 11-23.
|
9 |
ADEETH CARIAPPA A G , KATHAYAT B , KARTHIGA S , et al . Price analysis and forecasting for decision making: Insights from wheat markets in India[J]. The Indian journal of agricultural sciences, 2020, 90(5): 979-984.
|
10 |
DAREKAR A , REDDY A A . Forecasting of common paddy prices in India[J]. SSRN electronic journal, 2017: 71-75.
|
11 |
吕星辰 . 基于网络舆情影响的小宗农产品价格预测研究[D]. 哈尔滨: 东北农业大学, 2023.
|
|
LYU X C . Research on price prediction of Xiaozong agricultural products based on the influence of Internet public opinion[D]. Harbin: Northeast Agricultural University, 2023.
|
12 |
王溯, 胡长情 . 基于ARCH类模型的农产品价格波动特征研究[J]. 中国林业经济, 2023, (2): 80-84.
|
|
WANG S , HU C Q . Research on the characteristics of agricultural product price fluctuation based on ARCH model[J]. China Forestry Economics, 2023, (2): 80-84.
|
13 |
MAHMOUD SAYED AGBO H . Forecasting agricultural price volatility of some export crops in Egypt using ARIMA/GARCH model[J]. Review of economics and political science, 2023, 8(2): 123-133.
|
14 |
FUNAHASHI K I , NAKAMURA Y . Approximation of dynamical systems by continuous time recurrent neural networks[J]. Neural networks, 1993, 6(6): 801-806.
|
15 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
|
16 |
CHO K , VAN MERRIENBOER B , GULCEHRE C , et al . Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. arXiv: 1406.1078, 2014.
|
17 |
李哲敏, 许世卫, 崔利国, 等 . 基于动态混沌神经网络的预测研究: 以马铃薯时间序列价格为例[J]. 系统工程理论与实践, 2015, 35(8): 2083-2091.
|
|
LI Z M , XU S W , CUI L G , et al . Prediction study based on dynamic chaotic neural network: Taking potato time-series prices as an example[J]. Systems engineering-theory & practice, 2015, 35(8): 2083-2091.
|
18 |
CHOUDHARY K , JHA G K , DAS P, et al . Forecasting potato price using ensemble artificial neural networks[J]. Indian journal of extension education, 2019, 55(1): 73-77.
|
19 |
王桂红, 潘栋, 刘向锋 . 基于门控循环单元网络的农产品价格预测模型构建[J]. 沈阳师范大学学报(自然科学版), 2022, 40(5): 451-456.
|
|
WANG G H , PAN D , LIU X F . Construction of agricultural product price forecasting model based on gated recurrent unit[J]. Journal of Shenyang normal university (natural science edition), 2022, 40(5): 451-456.
|
20 |
胡彦军, 张平川, 尚峥, 等 . 基于深度学习的大蒜价格预测研究[J]. 河南科技学院学报(自然科学版), 2023, 51(3): 35-42.
|
|
HU Y J , ZHANG P C , SHANG Z , et al . Research on garlic price prediction based on deep learning[J]. Journal of Henan institute of science and technology (natural science edition), 2023, 51(3): 35-42.
|
21 |
XU X J , ZHANG Y . Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat[J]. Intelligent systems in accounting, finance and management, 2022, 29(3): 169-181.
|
22 |
XU X J , ZHANG Y . Corn cash price forecasting with neural networks[J]. Computers and electronics in agriculture, 2021, 184: ID 106120.
|
23 |
LATIFI Z , FAMI H S . Forecasting wheat production in Iran using time series technique and artificial neural network[J]. Journal of agricultural science and technology, 2022, 24(2): 261-273.
|
24 |
袁铭涓, 孙若莹 . 基于LSTM神经网络的大宗农产品价格预测研究[J]. 海峡科技与产业, 2021, 34(11): 43-47, 60.
|
|
YUAN M J , SUN R Y . Research on price prediction of bulk agricultural products based on LSTM neural network[J]. Technology and industry across the Straits, 2021, 34(11): 43-47, 60.
|
25 |
张璇 . 基于LSTM的河南省花生价格预测研究[D]. 郑州: 华北水利水电大学, 2021.
|
|
ZHANG X . Research on peanut price forecast in Henan province based on long short-term memory[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021.
|
26 |
贾宁, 郑纯军 . 基于LSTM-DA神经网络的农产品价格指数短期预测模型[J]. 计算机科学, 2019, 46(S2): 62-65, 71.
|
|
JIA N , ZHENG C J . Short-term forecasting model of agricultural product price index based on LSTM-DA neural network[J]. Computer science, 2019, 46(S2): 62-65, 71.
|
27 |
吴培, 李哲敏 . 中国猪肉价格预测研究: 基于ARIMA-GM-RBF组合模型的分析[J]. 价格理论与实践, 2019(1): 75-78.
|
|
WU P , LI Z M . Forecast researchon China's pork price based on the ARIMA-GM-RBF hybrid model[J]. Price: theory & practice, 2019(1): 75-78.
|
28 |
ZHANG Q H , YAN H Z , NING J , et al . A deep learning framework for forecasting pork import prices using PPI_IPD index[C]// Proceedings of the 2023 International Conference on Intelligent Computing and Its Emerging Applications. New York, USA: ACM, 2023: 167-169.
|
29 |
CHEN P , YE H Z . Short-term forecast of agricultural prices using CNN+LSTM[C]// Proceedings of the 7th International Conference on Intelligent Information Processing. New York, USA: ACM, 2022.
|
30 |
曹新悦, 贺春林, 崔梦天 . 基于X12-ARIMA和LSTM组合模型的城市蔬菜价格波动规律及预测[J]. 西南民族大学学报(自然科学版), 2021, 47(4): 418-425.
|
|
CAO X Y , HE C L , CUI M T . Construction of urban vegetable price fluctuation prediction model based on X12-ARIMA and LSTM[J]. Journal of southwest Minzu university (natural science edition), 2021, 47(4): 418-425.
|
31 |
NIE Y , NGUYEN N H , SINTHONG P , et al . A time series is worth 64 words: Long-term forecasting with transformers[EB/OL]. arXiv: 2211.14730, 2022.
|
32 |
LIU Y , HU T , ZHANG H , et al . itransformer: Inverted transformers are effective for time series forecasting[EB/OL]. arXiv: 2310.06625, 2024.
|
33 |
HAN L , CHEN X Y , YE H J , et al . Softs: Efficient multivariate time series forecasting with series-core fusion[EB/OL]. arXiv: 2404.14197, 2024.
|
34 |
DAS A, KONG W , LEACH A , et al . Long-term forecasting with tide: Time-series dense encoder[EB/OL]. arXiv: 2304.08424, 2023.
|
35 |
JIN M , WANG S , MA L , et al . Time-LLM: Time series forecasting by reprogramming large language models[EB/OL]. arXiv: 2310.01728, 2024.
|
36 |
曹淑欣, 许学斌, 路龙宾, 等 . 融合注意力机制与残差网络的人耳识别方法[J]. 光电子·激光, 2023, 34(4): 378-386.
|
|
CAO S X , XU X B , LU L B , et al . Ear recognition method combining attention mechanism and residual network[J]. Journal of Optoelectronics·Laser, 2023, 34(4): 378-386.
|