1 |
王宁, 李继光, 娄翼来, 等. 作物根系形态对施肥措施的响应[J]. 中国农学通报, 2020, 36(3): 53-58.
|
|
WANG N, LI J G, LOU Y L, et al. Response of crop root morphology to fertilization measures[J]. Chinese agricultural science bulletin, 2020, 36(3): 53-58.
|
2 |
DONG H Z, NIU Y H, LI W J, et al. Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence[J]. Journal of experimental botany, 2008, 59(6): 1295-1304.
|
3 |
吴茜, 张伟欣, 张玲玲, 等. 植物根系表型信息获取技术研究进展[J]. 江苏农业科学, 2021, 49(5): 31-37.
|
|
WU Q, ZHANG W X, ZHANG L L, et al. Research progress on acquisition of plant root phenotype information[J]. Jiangsu agricultural sciences, 2021, 49(5): 31-37.
|
4 |
ZHANG B W. Plant root research methods and trends[J]. Agricultural science & technology, 2017, 18(12): 2295-2298, 2302.
|
5 |
肖爽, 刘连涛, 张永江, 等. 植物微根系原位观测方法研究进展[J]. 植物营养与肥料学报, 2020, 26(2): 370-385.
|
|
XIAO S, LIU L T, ZHANG Y J, et al. Review on new methods of in situ observation of plant micro-roots and interpretation of root images[J]. Journal of plant nutrition and fertilizers, 2020, 26(2): 370-385.
|
6 |
赵先丽, 蔡福, 李荣平, 等. 春玉米根系图像语义分割最佳分辨率和概率阈值研究[J]. 核农学报, 2023, 37(8): 1690-1699.
|
|
ZHAO X L, CAI F, LI R P, et al. Optimal resolution and probability threshold for the semantic segmentation of spring maize root image[J]. Journal of nuclear agricultural sciences, 2023, 37(8): 1690-1699.
|
7 |
何勇, 李禧尧, 杨国峰, 等. 室内高通量种质资源表型平台研究进展与展望[J]. 农业工程学报, 2022, 38(17): 127-141.
|
|
HE Y, LI X Y, YANG G F, et al. Research progress and prospect of indoor high-throughput germplasm phenotyping platforms[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(17): 127-141.
|
8 |
PERELMAN A, LAZAROVITCH N, VANDERBORGHT J, et al. Quantitative imaging of sodium concentrations in soil-root systems using magnetic resonance imaging (MRI)[J]. Plant and soil, 2020, 454(1/2): 171-185.
|
9 |
SCOTSON C, DUNCAN S, WILLIAMS K, et al. X‐ray computed tomography imaging of solute movement through ridged and flat plant systems[J]. European journal of soil science, 2021, 72 (1): 198-214
|
10 |
HAMMAC W A, PAN W L, BOLTON R P, et al. High resolution imaging to assess oilseed species' root hair responses to soil water stress[J]. Plant and soil, 2011, 339(1/2): 125-135.
|
11 |
MOHAMED A, MONNIER Y, MAO Z, et al. An evaluation of inexpensive methods for root image acquisition when using rhizotrons[J]. Plant methods, 2017, 13(1): 1-13.
|
12 |
ZHAO H J, WANG N, SUN H C, et al. RhizoPot platform: A high-throughput in situ root phenotyping platform with integrated hardware and software[J]. Frontiers in plant science, 2022, 13: ID 1004904.
|
13 |
DAS A, SCHNEIDER H, BURRIDGE J, et al. Digital imaging of root traits (DIRT): A high-throughput computing and collaboration platform for field-based root phenomics[J]. Plant methods, 2015, 11: ID 51.
|
14 |
GALKOVSKYI T, MILEYKO Y, BUCKSCH A, et al. GiA Roots: Software for the high throughput analysis of plant root system architecture[J]. BMC plant biology, 2012, 12: ID 116.
|
15 |
PIERRET A, GONKHAMDEE S, JOURDAN C, et al. IJ_Rhizo: An open-source software to measure scanned images of root samples[J]. Plant and soil, 2013, 373(1/2): 531-539.
|
16 |
ARMENGAUD P, ZAMBAUX K, HILLS A, et al. EZ-Rhizo: Integrated software for the fast and accurate measurement of root system architecture[J]. The plant journal, 2009, 57(5): 945-956.
|
17 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[EB/OL]. arXiv: 1411.4038, 2014.
|
18 |
KAMAL S, SHENDE V G, SWAROOPA K, et al. FCN network-based weed and crop segmentation for IoT-aided agriculture applications[J]. Wireless communications and mobile computing, 2022, 2022: 1-10.
|
19 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[EB/OL]. arXiv: 1511.00561, 2015.
|
20 |
WANG T, ROSTAMZA M, SONG Z H, et al. SegRoot: A high throughput segmentation method for root image analysis[J]. Computers and electronics in agriculture, 2019, 162: 845-854.
|
21 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[EB/OL]. arXiv: 1612.01105, 2016.
|
22 |
ZHANG R, CHEN J, FENG L, et al. A Refined Pyramid Scene Parsing Network for Polarimetric SAR Image Semantic Segmentation in Agricultural Areas[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
|
23 |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[EB/OL]. arXiv: 1802.02611. 2018.
|
24 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. arXiv: 1706.05587, 2017.
|
25 |
KANG J, LIU L T, ZHANG F C, et al. Semantic segmentation model of cotton roots in situ image based on attention mechanism[J]. Computers and electronics in agriculture, 2021, 189: ID 106370.
|
26 |
SHEN C, LIU L T, ZHU L X, et al. High-throughput in situ root image segmentation based on the improved DeepLabv3+ method[J]. Frontiers in plant science, 2020, 11: ID 576791.
|
27 |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[EB/OL]. arXiv: 1505.04597, 2015.
|
28 |
林娜, 何静, 王斌, 等. 结合植被光谱特征与Sep-UNet的城市植被信息智能提取方法[J]. 地球信息科学学报, 2023, 25(8): 1717-1729.
|
|
LIN N, HE J, WANG B, et al. Intelligent extraction of urban vegetation information based on vegetation spectral signature and sep-UNet[J]. Journal of geo-information science, 2023, 25(8): 1717-1729.
|
29 |
申传庆, 王凯, 王文杰. 基于ResNet-UNet的地表覆盖自动分类技术研究[J]. 地理空间信息, 2023, 21(6): 21-23, 27.
|
|
SHEN C Q, WANG K, WANG W J. Research on automatic classification technology of land coverage based on ResNet-UNet[J]. Geospatial information, 2023, 21(6): 21-23, 27.
|
30 |
陈桂芬, 赵姗, 曹丽英, 等. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44.
|
|
CHEN G F, ZHAO S, CAO L Y, et al. Corn plant disease recognition based on migration learning and convolutional neural network[J]. Smart agriculture, 2019, 1(2): 34-44.
|
31 |
XU W H, YU G H, CUI Y M, et al. PRMI: A dataset of minirhizotron images for diverse plant root study[EB/OL]. arXiv: 2201.08002, 2022.
|
32 |
SEETHEPALLI A, DHAKAL K, GRIFFITHS M, et al. RhizoVision Explorer: Open-source software for root image analysis and measurement standardization[J]. AoB PLANTS, 2021, 13(6): ID plab056.
|