1 | 郭香凤, 向进乐, 李秀珍, 等. 贮藏温度对西兰花净菜品质的影响[J]. 农业机械学报, 2008, 39(2): 201-204. | 2 | 夏永泉, 李耀斌, 曾莎. 基于HSI颜色空间的植物叶片病斑提取方法[J]. 江苏农业科学, 2015(08): 420-422. | 3 | 高理文, 林小桦. 基于L*a*b*彩色空间和局域动态阈值的药用植物叶片图像分割[J]. 计算机应用与软件, 2014, (1): 232-235. | 3 | Gao L, Lin X. Segmentation of images of medicinal plant leaves based on L*a*b* colour space and local dynamic threshold[J]. Computer Applications and Software, 2014, (1): 232-235. | 4 | 董晓辉. 基于多彩色空间的麦田监控图像分割技术研究[D]. 开封: 河南大学, 2015. | 4 | Dong X. Wheat mornitoring image segmatation technology using variety of color spaces[D]. Kaifeng: Henan Agricultural University, 2015. | 5 | 魏丽冉, 岳峻, 李振波, 等. 基于核函数支持向量机的植物叶部病害多分类检测方法[J]. 农业机械学报, 2017, (S0): 166-171. | 5 | Wei L, Yue J, Li Z, et al. Multi-classification detection method of plant leaf disease based on kernel function SVM[J]. Transactions of the CSAM, 2017, (S0): 166-171. | 6 | 周俊, 刘丽川, 杨继平. 基于K-均值聚类与小波分析的声发射信号去噪[J]. 石油化工高等学校学报, 2013, 26(3): 69-73. | 6 | Zhou J, Liu L, Yang J. Acoustic emission signal denoising based on K-means clustering and wavelet analysis[J]. Journal of Petrochemical Universities, 2013, 26(3): 69-73. | 7 | 李先锋, 朱伟兴, 纪滨, 等. 基于图像处理和蚁群优化的形状特征选择与杂草识别[J]. 农业工程学报, 2010, 26(10): 178-182. | 7 | Li X, Zhu W, Ji B, et al. Shape feature selection and weed recognition based on image processing and ant colony optimization[J]. Transactions of the CSAE, 2010, 26(10): 178-182. | 8 | 袁定帅, 陈洁, 赖晓芳, 等. 不同贮藏条件对西兰花感官品质及抗氧化物质的影响[J]. 食品科技, 2017, (4): 40-45. | 8 | Yuan D, Chen J, Lai X, et al. Effects of diifferent storage conditions on sensory quality and antioxidants of broccoli[J]. Food Science and Techonology, 2017, (4): 40-45. | 9 | Lee S H, Chan C S, Wilkin P, et al. Deep-plant: Plant identification with convolutional neural networks[C]// IEEE International Conference on Image Processing (ICIP), 2015: 452-456. | 10 | Dyrmann M, Karstoft H, Midtiby H S. Plant species classification using deep convolutional neural network[J]. Biosystems Engineering, 2016, 151: 72-80. | 11 | Too E C, Li Y, Njuki S, et al. A comparative study of fine-tuning deep learning models for plant disease identification[J]. Computers and Electronics in Agriculture, 2018, 161: 272-279. | 12 | Fuentes A, Yoon S, Kim S C, et al. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J]. Sensors, 2017, 17: 2022-2042. | 13 | 李淼, 王敬贤, 李华龙, 等. 基于 CNN 和迁移学习的农作物病害识别方法研究[J]. 智慧农业, 2019, 1(3): 46-55. | 13 | Li M, Wang J, Li H, et al. Method for identifying crop disease based on CNN and transfer learning[J]. Smart Agriculture, 2019, 1(3): 46-55. | 14 | 陈桂芬, 赵姗, 曹丽英, 等. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44. | 14 | Chen G, Zhao S, Cao L, et al. Corn plant disease recognition based on migration learning and convolutional neural network[J]. Smart Agriculture, 2019, 1(2): 34-44. | 15 | Fu Z, Robles-Kelly A. A quadratic programming approach to image labelling[J]. IET Computer Vision, 2009, 2(4): 193-207. | 16 | 刘万军, 梁雪剑, 曲海成. 不同池化模型的卷积神经网络学习性能研究[J]. 中国图象图形学报, 2016, 21(9): 1178-1190. | 16 | Liu W, Liang X, Qu H. Learning performance of convolutional neural networks with different pooling models[J]. Journal of Image and Graphics, 2016, 21(9): 1178-1190. | 17 | 李林, 顾进锋, 宋安捷, 等. 基于GPU的生态环境遥感评价模型并行化研究[J]. 农业机械学报, 2017(5): 140-146. | 17 | Li L, Gu J, Song A, et al. Parallelization on model of ecological environment remote sensing evaluation based GPU[J]. Transactions of the CSAM, 2017(5): 140-146. | 18 | He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks[J]. Computer Science, 2016: 630-645. | 19 | Wang Y, Yang A, Chen X, et al. A deep learning approach for blind drift calibration of sensor networks[J]. IEEE Sensors Journal, 2017, 17(13): 4158-4171. | 20 | Gong L, Jiang S, Yang Z, et al. Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks[J]. International Journal of Computer Assisted Radiology and Surgery, 2019, 14(11): 1969-1979. | 21 | Zhou X, Jin K, Shang Y, et al. Visually interpretable representation learning for depression recognition from facial images[J]. IEEE Transactions on Affective Computing, 2018, DOI: 10.1109/TAFFC.2018.2828819. | 22 | Wurfl T, Hoffmann M, Christlein V, et al. Deep learning computed tomography: Learning projection-domain weights from image Domain in limited angle problems[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1454-1463. | 23 | Fan Y C, Chen Y C, Chou S Y. Vivid-DIBR based 2D-3D image conversion system for 3D display[J]. Journal of Display Technology, 2017, 10(10): 887-898. | 24 | Philipp P, Felix V. Optimal approximation of piecewise smooth functions using deep ReLU neural networks[J]. Neural Networks, 2018, 108: 296-330. | 25 | Cai H, Yang Z, Cao X, et al. A new iterative triclass thresholding technique in image segmentation[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1038-1046. | 26 | Hao G, Xu W. Image segmentation using Quantum-behaved partical swarm optimization algorithm[J]. Computer Engineering and Applications, 2007, 43(33): 831-835. | 27 | 李长缨, 简元才, 杜广岑, 等. 青花菜耐贮性鉴定方法和标准[J]. 华北农学报, 1999, 14(4):134-136. | 27 | Li C, Jian Y, Du G, et al. Appraising method and standard for storage durability in broccoli[J]. Acta Agriculturae Boreali-Sinica, 1999, 14(4): 134-136. | 28 | 侯格贤, 吴成柯. 图像分割质量评价方法研究[J]. 中国图象图形学报, 2000, 5A(1): 39-43. | 28 | Hou G, Wu C. Researches on evaluation methods for images segmentation[J]. Journal of Image and Graphics, 2000, 5A(1): 39-43. |
|