| [1] |
WANG X W, LI X Y, LOU Y S, et al. Refined evaluation of climate suitability of maize at various growth stages in major maize-producing areas in the north of China[J]. Agronomy, 2024, 14(2): ID 344.
|
| [2] |
YANG J X, ZHANG R R, DING C C, et al. YOLO-detassel: Efficient object detection for Omitted Pre-Tassel in detasseling operation for maize seed production[J]. Computers and electronics in agriculture, 2025, 231: ID 109951.
|
| [3] |
THOMPSON A L, THORP K R, CONLEY M M, et al. Comparing nadir and multi-angle view sensor technologies for measuring in-field plant height of upland cotton[J]. Remote sensing, 2019, 11(6): ID 700.
|
| [4] |
CHIVASA W, MUTANGA O, BIRADAR C. UAV-based multispectral phenotyping for disease resistance to accelerate crop improvement under changing climate conditions[J]. Remote sensing, 2020, 12(15): ID 2445.
|
| [5] |
KUMAR C, MUBVUMBA P, HUANG Y B, et al. Multi-stage corn yield prediction using high-resolution UAV multispectral data and machine learning models[J]. Agronomy, 2023, 13(5): ID 1277.
|
| [6] |
LU H, CAO Z G, XIAO Y, et al. Region-based colour modelling for joint crop and maize tassel segmentation[J]. Biosystems engineering, 2016, 147: 139-150.
|
| [7] |
KURTULMUŞ F, KAVDIR İ. Detecting corn tassels using computer vision and support vector machines[J]. Expert systems with applications, 2014, 41(16): 7390-7397.
|
| [8] |
ZHANG W Q, WU S, WEN W L, et al. Three-dimensional branch segmentation and phenotype extraction of maize tassel based on deep learning[J]. Plant methods, 2023, 19(1): ID 76.
|
| [9] |
GAO R, JIN Y S, TIAN X, et al. YOLOv5-T: A precise real-time detection method for maize tassels based on UAV low altitude remote sensing images[J]. Computers and electronics in agriculture, 2024, 221: ID 108991.
|
| [10] |
YU X, YIN D M, NIE C W, et al. Maize tassel area dynamic monitoring based on near-ground and UAV RGB images by U-Net model[J]. Computers and electronics in agriculture, 2022, 203: ID 107477.
|
| [11] |
WAN T Y, RAO Y, JIN X, et al. Improved U-Net for growth stage recognition of in-field maize[J]. Agronomy, 2023, 13(6): ID 1523.
|
| [12] |
LIU L B, YU L J, WU D, et al. PocketMaize: An Android-smartphone application for maize plant phenotyping[J]. Frontiers in plant science, 2021, 12: ID 770217.
|
| [13] |
LI Y H, ZHAO Z X, LUO Y F, et al. Real-time pattern-recognition of GPR images with YOLOv3 implemented by tensorflow[J]. Sensors, 2020, 20(22): ID 6476.
|
| [14] |
PU H L, CHEN X, YANG Y Y, et al. Tassel-YOLO: A new high-precision and real-time method for maize tassel detection and counting based on UAV aerial images[J]. Drones, 2023, 7(8): ID 492.
|
| [15] |
NIU S W, NIE Z G, LI G, et al. Multi-altitude corn tassel detection and counting based on UAV RGB imagery and deep learning[J]. Drones, 2024, 8(5): ID 198.
|
| [16] |
JIA Y J, FU K, LAN H, et al. Maize tassel detection with CA-YOLO for UAV images in complex field environments[J]. Computers and electronics in agriculture, 2024, 217: ID 108562.
|
| [17] |
LIU Y L, CEN C J, CHE Y P, et al. Detection of maize tassels from UAV RGB imagery with faster R-CNN[J]. Remote sensing, 2020, 12(2): ID 338.
|
| [18] |
FALAHAT S, KARAMI A. Maize tassel detection and counting using a YOLOv5-based model[J]. Multimedia tools and applications, 2023, 82(13): 19521-19538.
|
| [19] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 779-788.
|
| [20] |
KHANAM R, HUSSAIN M. Yolov11: An overview of the key architectural enhancements[EB/OL]. arXiv: 2410.17725, 2024.
|
| [21] |
CAI H, LI J, HU M, et al. Efficientvit: Multi-scale linear attention for high-resolution dense prediction[EB/OL]. arXiv: 2205.14756, 2022.
|
| [22] |
VOITA E, TALBOT D, MOISEEV F, et al. Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned[EB/OL]. arXiv:1905.09418, 2019.
|
| [23] |
NASCIMENTO M G D, PRISACARIU V, FAWCETT R. DSConv: Efficient convolution operator[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 5147-5156.
|
| [24] |
HUANG H, CHEN Z, ZOU Y, et al. Channel prior convolutional attention for medical image segmentation[J]. Computers in biology and medicine, 2024, 178: ID 108784.
|
| [25] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block attention module[C]// Computer Vision-ECCV 2018. Cham, Germany: Springer, 2018: 3-19.
|
| [26] |
LI J F, WEN Y, HE L H. SCConv: Spatial and channel reconstruction convolution for feature redundancy[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 6153-6162.
|
| [27] |
ZHANG X L, WANG Z S, WANG X S, et al. STARNet: An efficient spatiotemporal feature sharing reconstructing network for automatic modulation classification[J]. IEEE transactions on wireless communications, 2024, 23(10): 13300-13312.
|
| [28] |
CHEN H, WANG Y, GUO J, et al. Vanillanet: The power of minimalism in deep learning[J]. Advances in neural information processing systems, 2023, 36: 7050-7064.
|
| [29] |
QIN D F, LEICHNER C, DELAKIS M, et al. MobileNetV4: Universal models for the mobile ecosystem[C]// Computer Vision – ECCV 2024. Cham, Germany: Springer Nature Switzerland, 2024: 78-96.
|
| [30] |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]// Computer Vision-ECCV 2018. Cham, Germany: Springer, 2018: 122-138.
|
| [31] |
WANG A, CHEN H, LIN Z J, et al. Rep ViT: Revisiting mobile CNN from ViT perspective[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2024: 15909-15920.
|