欢迎您访问《智慧农业(中英文)》官方网站! English

Smart Agriculture ›› 2025, Vol. 7 ›› Issue (6): 96-110.doi: 10.12133/j.smartag.SA202505021

• 专刊--遥感+AI 赋能农业农村现代化 • 上一篇    下一篇

LightTassel-YOLO:一种基于无人机遥感的玉米雄穗实时检测方法

曹玉莹1,2, 刘银川1,2, 高新悦1,2, 贾银江1,2(), 董守田1,2()   

  1. 1. 东北农业大学 电气与信息学院,黑龙江 哈尔滨 150030,中国
    2. 黑龙江省农业农村部东北智慧农业技术重点实验室,黑龙江 哈尔滨 150030,中国
  • 收稿日期:2025-05-19 出版日期:2025-11-30
  • 通信作者:

LightTassel-YOLO: A Real-Time Detection Method for Maize Tassels Based on UAV Remote Sensing

CAO Yuying1,2, LIU Yinchuan1,2, GAO Xinyue1,2, JIA Yinjiang1,2(), DONG Shoutian1,2()   

  1. 1. Institutions of Electrical and Information, Northeast Agricultural University, Harbin 150030, China
    2. Key Laboratory of Northeast Smart Agricultural Technology, Ministry of Agriculture and Rural Affairs, Heilongjiang Province, Harbin 150030, China
  • Received:2025-05-19 Online:2025-11-30
  • Foundation items:国家科技创新2030“新一代人工智能”重大项目(2021ZD0110904); 黑龙江省“揭榜挂帅”科技攻关项目(20212XJ05A0201)
  • About author:

    曹玉莹,硕士,讲师,研究方向为农业视觉感知,E-mail:

    CAO Yuying, E-mail:

  • Corresponding author:
    贾银江,博士,教授,研究方向为智慧农业,E-mail: ;2
    董守田,硕士,副教授,研究方向为智慧农业,E-mail:
    JIA Yinjiang, E-mail: ; 2
    DONG Shoutian, E-mail:

摘要:

[目的/意义] 玉米雄穗的精准识别是制种生产的关键环节。针对现有目标检测模型在复杂大田场景下的研究存在数据维度受限、特征提取不足、计算负载较高、检测效率低下等问题,本研究提出一种基于改进YOLOv11n的大田玉米雄穗实时检测模型LightTassel-YOLO,旨在快速、准确地识别玉米雄穗,以实现去雄无人机的高效作业,减少人工干预的影响。 [方法] 利用无人机连续获取2023—2024年玉米抽雄期数据,构建了覆盖玉米抽雄不同阶段、多品种、多高度及多气象条件的大规模高质量玉米雄穗数据集。首先,将EfficientViT应用于主干网中,以增强在多尺度特征中感知信息的能力;其次,设计C2PSA-CPCA模块通过为特征图动态分配通道和空间维度的注意力权重,有效增强网络对目标特征提取能力的同时降低了计算复杂度;最后构建C3k2-SCConv模块,促进代表性特征学习的同时达成低成本空间特征重构,提高模型检测准确率。[结果与讨论] LightTassel-YOLO为玉米雄穗检测提供了一种可靠方法,最终模型的准确率为92.6%,召回率为89.1%,AP@0.5为94.7%,较基准模型YOLOv11n分别提升2.5、3.8、4.0个百分点,参数量仅为3.23 M,计算量为6.7 GFLOPs。此外,LightTassel-YOLO还与目前主流的目标检测算法Faster R-CNN,SSD和YOLO系列的多个版本进行对比,验证本研究提出方法在综合性能上均优于上述算法,在典型田间场景中,模型亦展现出优异适应性。 [结论] 本研究所提出的方法为玉米雄穗精准监测提供了有效的理论基础,对提升田间管理智能化水平具有重要意义。

关键词: 玉米雄穗检测, YOLOv11, EfficientViT, CPCA, SCConv, 无人机

Abstract:

[Objective] The accurate identification of maize tassels is critical for the production of hybrid seed. Existing object detection models in complex farmland scenarios face limitations such as restricted data diversity, insufficient feature extraction, high computational load, and low detection efficiency. To address these challenges, a real-time field maize tassel detection model, LightTassel-YOLO (You Only Look Once) based on an improved YOLOv11n is proposed. The model is designed to quickly and accurately identify maize tassels, enabling efficient operation of detasseling unmanned aerial vehicles (UAVs) and reducing the impact of manual intervention. [Methods] Data was continuously collected during the tasseling stage of maize from 2023 to 2024 using UAVs, establishing a large-scale, high-quality maize tassel dataset that covered different maize tasseling stages, multiple varieties, varying altitudes, and diverse meteorological conditions. First, EfficientViT (Efficient vision transformer) was applied as the backbone network to enhance the ability to perceive information across multi-scale features. Second, the C2PSA-CPCA (Convolutional block with parallel spatial attention with channel prior convolutional attention) module was designed to dynamically assign attention weights to the channel and spatial dimensions of feature maps, effectively enhancing the network's capability to extract target features while reducing computational complexity. Finally, the C3k2-SCConv module was constructed to facilitate representative feature learning and achieve low-cost spatial feature reconstruction, thereby improving the model's detection accuracy. [Results and Discussions] The results demonstrated that LightTassel-YOLO provided a reliable method for maize tassel detection. The final model achieved an accuracy of 92.6%, a recall of 89.1%, and an AP@0.5 of 94.7%, representing improvements of 2.5, 3.8 and 4.0 percentage points over the baseline model YOLOv11n, respectively. The model had only 3.23 M parameters and a computational cost of 6.7 GFLOPs. In addition, LightTassel-YOLO was compared with mainstream object detection algorithms such as Faster R-CNN, SSD, and multiple versions of the YOLO series. The results demonstrated that the proposed method outperformed these algorithms in overall performance and exhibits excellent adaptability in typical field scenarios. [Conclusions] The proposed method provides an effective theoretical framework for precise maize tassel monitoring and holds significant potential for advancing intelligent field management practices.

Key words: maize tassel detection, YOLOv11, EfficientViT, CPCA, SCConv, UAV

中图分类号: