[1] |
ABBAS A, ZHAO C Y, ULLAH W, et al. Towards sustainable farm production system: A case study of corn farming[J]. Sustainability, 2021, 13(16): ID 9243.
|
[2] |
DENG J Y, LAN C Y H, ZHOU J X, et al. Analysis of sex pheromone production and field trapping of the Asian corn borer (Ostrinia furnacalis Guenée) in Xinjiang, China[J]. Journal of integrative agriculture, 2023, 22(4): 1093-1103.
|
[3] |
LIU J, WANG X W. Plant diseases and pests detection based on deep learning: A review[J]. Plant methods, 2021, 17(1): ID 22.
|
[4] |
WEN C J, CHEN H R, MA Z Y, et al. Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting[J]. Frontiers in plant science, 2022, 13: ID 973985.
|
[5] |
YANG S, XING Z Y, WANG H B, et al. Maize-YOLO: A new high-precision and real-time method for maize pest detection[J]. Insects, 2023, 14(3): ID 278.
|
[6] |
ZHANG C, HU Z H, XU L W, et al. A YOLOv7 incorporating the Adan optimizer based corn pests identification method[J]. Frontiers in plant science, 2023, 14: ID 1174556.
|
[7] |
ZHU L Q, LI X M, SUN H M, et al. Research on CBF-YOLO detection model for common soybean pests in complex environment[J]. Computers and electronics in agriculture, 2024, 216: ID 108515.
|
[8] |
黎祖胜, 唐吉深, 匡迎春. 基于改进YOLOv10n的轻量化荔枝虫害小目标检测模型[J]. 智慧农业(中英文), 2025, 7(2): 146-159.
|
|
LI Z S, TANG J S, KUANG Y C. A lightweight model for detecting small targets of Litchi pests based on improved YOLOv 10n[J/OL]. Smart agriculture, 2025, 7(2): 146-159.
|
[9] |
CHEN C J, HUANG Y Y, LI Y S, et al. Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying[J]. IEEE access, 2021, 9: 21986-21997.
|
[10] |
BETTI SORBELLI F, PALAZZETTI L, PINOTTI C M. YOLO-based detection of Halyomorpha halys in orchards using RGB cameras and drones[J]. Computers and electronics in agriculture, 2023, 213: ID 108228.
|
[11] |
PARK Y L, NAHARKI K, KARIMZADEH R, et al. Rapid assessment of insect pest outbreak using drones: A case study with Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) in soybean fields[J]. Insects, 2023, 14(6): ID 555.
|
[12] |
ABBAS A, SADDAM B, ULLAH F, et al. Global distribution and sustainable management of Asian corn borer (ACB), Ostrinia Furnacalis (Lepidoptera: Crambidae): Recent advancement and future prospects[J]. Bulletin of entomological research, 2025, 115(1): 105-120.
|
[13] |
王燕, 闵红. 玉米病虫害识别与绿色防控图谱[M]. 郑州: 河南科学技术出版社, 2021.
|
[14] |
XU J H, CAO L J, PAN L L, et al. IMC-YOLO: A detection model for assisted razor clam fishing in the mudflat environment[J]. PeerJ computer science, 2025, 11: ID e2614.
|
[15] |
YOU C Z, KONG H Z. Improved steel surface defect detection algorithm based on YOLOv8[J]. IEEE access, 2024, 12: 99570-99577.
|
[16] |
GENZE N, AJEKWE R, GÜRELI Z, et al. Deep learning-based early weed segmentation using motion blurred UAV images of sorghum fields[J]. Computers and electronics in agriculture, 2022, 202: ID 107388.
|
[17] |
SHI H, LIU C X, WU M, et al. Real-time detection of Chinese cabbage seedlings in the field based on YOLO11-CGB[J]. Frontiers in plant science, 2025, 16: ID 1558378.
|
[18] |
WANG C, HAN Y, YANG C, et al. CF-YOLO for small target detection in drone imagery based on YOLOv11 algorithm[J]. Scientific reports, 2025, 15(1): ID 16741.
|
[19] |
XU W, WAN Y. ELA: Efficient local attention for deep convolutional neural networks[EB/OL]. arXiv: 2403.01123, 2024.
|
[20] |
XU Y, LU J, WANG C. YOLO-SOD: Improved YOLO small object detection[M]// PRICAI 2024: Trends in Artificial Intelligence. Singapore: Springer Nature Singapore, 2024: 164-176.
|
[21] |
QU J L, LI Q, PAN J, et al. SS-YOLOv8: Small-size object detection algorithm based on improved YOLOv8 for UAV imagery[J]. Multimedia systems, 2025, 31(1): ID 42.
|
[22] |
ZHOU S C, YANG L, LIU H T, et al. Improved YOLO for long range detection of small drones[J]. Scientific reports, 2025, 15: ID 12280.
|
[23] |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA. IEEE, 2021: 13708-13717.
|
[24] |
LI J F, WEN Y, HE L H. SCConv: Spatial and channel reconstruction convolution for feature redundancy[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 6153-6162.
|
[25] |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
|
[26] |
WANG J, XU C, YANG W, LI B. A normalized Gaussian Wasserstein distance for tiny object detection[EB/OL]. arXiv: 2110.13389, 2021.
|
[27] |
COSTA V G, PEDREIRA C E. Recent advances in decision trees: An updated survey[J]. Artificial intelligence review, 2023, 56(5): 4765-4800.
|
[28] |
LEEVY J L, JOHNSON J M, HANCOCK J, et al. Threshold optimization and random undersampling for imbalanced credit card data[J]. Journal of big data, 2023, 10(1): ID 58.
|
[29] |
TIAN Y J, ZHANG Y Q, ZHANG H B. Recent advances in stochastic gradient descent in deep learning[J]. Mathematics, 2023, 11(3): ID 682.
|
[30] |
LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[EB/OL]. arXiv: 1711.05101, 2017.
|
[31] |
NIE H J, PANG H L, MA M Y, et al. A lightweight remote sensing small target image detection algorithm based on improved YOLOv8[J]. Sensors, 2024, 24(9): ID 2952.
|
[32] |
PARK I, KIM S. Performance indicator survey for object detection[C]// 2020 20th International Conference on Control, Automation and Systems (ICCAS). Piscataway, New Jersey, USA: IEEE, 2020: 284-288.
|
[33] |
ZOU Z X, CHEN K Y, SHI Z W, et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
|
[34] |
RABBANI ALIF MAL, HUSSAIN M. YOLOv12: A breakdown of the key architectural features[EB/OL]. arXiv: 2502.14740, 2025.
|
[35] |
TIAN Y J, YE Q X, DOERMANN D. YOLOv12: Attention-centric real-time object detectors[EB/OL]. arXiv: 2502.12524, 2025.
|