1 |
RATSIMBAZAFY M K, SHARP P A, RAZANAMPARANY L, et al. Wild edible yams from Madagascar: New insights into nutritional composition support their use for food security and conservation[J]. Food science & nutrition, 2024, 12(1): 280-291.
|
2 |
ZHOU S Y, HUANG G L, CHEN G Y. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam[J]. Food chemistry, 2021, 361: ID 130089.
|
3 |
HWANG J H, PARK Y S, KIM H S, et al. Yam-derived exosome-like nanovesicles stimulate osteoblast formation and prevent osteoporosis in mice[J]. Journal of controlled release, 2023, 355: 184-198.
|
4 |
CHANG H Y, TONG X Y, YANG H Q, et al. Chinese yam (dioscorea opposita) and its bioactive compounds: The beneficial effects on gut microbiota and gut health[J]. Current opinion in food science, 2024, 55: ID 101121.
|
5 |
ZENG X X, LIU D H, HUANG L Q. Metabolome profiling of eight Chinese yam (Dioscorea polystachya Turcz.) varieties reveals metabolite diversity and variety specific uses[J]. Life, 2021, 11(7): ID 687.
|
6 |
WU Z G, JIANG W, NITIN M, et al. Characterizing diversity based on nutritional and bioactive compositions of yam germplasm (Dioscorea spp.) commonly cultivated in China[J]. Journal of food and drug analysis, 2016, 24(2): 367-375.
|
7 |
温建荣. 山药传统生产与现代生产的区别与比较[J]. 江西农业, 2018(18): 14.
|
|
WEN J R. Difference and comparison between traditional production and modern production of yam[J]. Jiangxi agriculture, 2018(18): 14.
|
8 |
王永乐. 让"科研之花"结出山药"产业之果"[N]. 河南日报, 2024-03-17(13).
|
9 |
郝雅洁, 张吴平, 史维杰, 等. 基于计算机视觉的小麦叶面积测量[J]. 湖北农业科学, 2019, 58(16): 129-132.
|
|
HAO Y J, ZHANG W P, SHI W J, et al. Measurement of wheat leaf area based on computer vision[J]. Hubei agricultural sciences, 2019, 58(16): 129-132.
|
10 |
GONG A P, WU X, QIU Z J, et al. A handheld device for leaf area measurement[J]. Computers and electronics in agriculture, 2013, 98: 74-80.
|
11 |
LI Z B, GUO R H, LI M, et al. A review of computer vision technologies for plant phenotyping[J]. Computers and electronics in agriculture, 2020, 176: ID 105672.
|
12 |
WENG Y, ZENG R, WU C M, et al. A survey on deep-learning-based plant phenotype research in agriculture[J]. Scientia sinica vitae, 2019, 49(6): 698-716.
|
13 |
ZHANG H C, WANG L, JIN X L, et al. High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing[J]. The crop journal, 2023, 11(5): 1303-1318.
|
14 |
李方一, 黄璜, 官春云. 作物叶面积测量的研究进展[J]. 湖南农业大学学报(自然科学版), 2021, 47(3): 274-282.
|
|
LI F Y, HUANG H, GUAN C Y. Review on measurement of crop leaf area[J]. Journal of Hunan agricultural university (natural sciences), 2021, 47(3): 274-282.
|
15 |
崔世钢, 秦建华. 图像处理法测定油菜叶面积的研究[J]. 湖北农业科学, 2017, 56(14): 2756-2757, 2767.
|
|
CUI S G, QIN J H. Study on the determination of leaf area of rape by image processing[J]. Hubei agricultural sciences, 2017, 56(14): 2756-2757, 2767.
|
16 |
于东玉, 冯天祥, 李奕昕, 等. 基于植物图像的活体叶片面积测量方法研究与实现[J]. 智能计算机与应用, 2019, 9(4): 173-176.
|
|
YU D Y, FENG T X, LI Y X, et al. Research and implementation of living leaf area measurement based on plant image[J]. Intelligent computer and applications, 2019, 9(4): 173-176.
|
17 |
李秋洁, 杨远明, 袁鹏成, 等. 基于饱和度分割的叶面积图像测量方法[J]. 林业工程学报, 2021, 6(4): 147-152.
|
|
LI Q J, YANG Y M, YUAN P C, et al. Image measurement method of leaf area based on saturation segmentation[J]. Journal of forestry engineering, 2021, 6(4): 147-152.
|
18 |
ViVEKANANTHAN V, VIGNESH R, VASANTHASEELAN S, et al. Concrete bridge crack detection by image processing technique by using the improved OTSU method[J]. Materials today: Proceedings, 2023, 74: 1002-1007.
|
19 |
YUAN H B, ZHU J J, WANG Q F, et al. An improved DeepLab v3+ deep learning network applied to the segmentation of grape leaf black rot spots[J]. Frontiers in plant science, 2022, 13: ID 795410.
|
20 |
BHAGAT S, KOKARE M, HASWANI V, et al. Eff-UNet++: A novel architecture for plant leaf segmentation and counting[J]. Ecological informatics, 2022, 68: ID 101583.
|
21 |
LU J W, LU B B, MA W L, et al. EAIS-Former: An efficient and accurate image segmentation method for fruit leaf diseases[J]. Computers and electronics in agriculture, 2024, 218: ID 108739.
|
22 |
陈从平, 钮嘉炜, 丁坤, 等. 基于深度学习的马铃薯病害智能识别[J]. 计算机仿真, 2023, 40(2): 214-217, 222.
|
|
CHEN C P, NIU J W, DING K, et al. Intelligent identification of potato diseases based on deep learning[J]. Computer simulation, 2023, 40(2): 214-217, 222.
|
23 |
杜鹏飞, 黄媛, 高欣娜, 等. 基于语义分割的复杂背景下黄瓜叶部病害严重程度分级研究[J]. 中国农机化学报, 2023, 44(11): 138-147.
|
|
DU P F, HUANG Y, GAO X N, et al. Research on cucumber leaf disease severity classification in complex background based on semantic segmentation[J]. China agricultural machinery chemistry, 2023, 44(11): 138-147.
|
24 |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[M]// NAVAB N, HORNEGGER J, WELLS W M, et al, eds. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241.
|
25 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495.
|
26 |
管博伦, 张立平, 朱静波, 等. 农业病虫害图像数据集构建关键问题及评价方法综述[J]. 智慧农业(中英文), 2023, 5(3): 17-34.
|
|
GUAN B L, ZHANG L P, ZHU J B, et al. The key issues and evaluation methods for constructing agricultural pest and disease image datasets: A review[J]. Smart agriculture, 2023, 5(3): 17-34.
|
27 |
PASZKE A, CHAURASIA A, KIM S, et al. ENet: A deep neural network architecture for real-time semantic segmentation[EB/OL]. arXiv: 1606.02147, 2016.
|
28 |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: Chasing higher FLOPS for faster neural networks[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 12021-12031.
|
29 |
KIM K H, SHIM P S, SHIN S. An alternative bilinear interpolation method between spherical grids[J]. Atmosphere, 2019, 10(3): ID 123.
|
30 |
GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: A survey[J]. Computational visual media, 2022, 8(3): 331-368.
|
31 |
NIU Z Y, ZHONG G Q, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62.
|
32 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 13713-13722.
|