| 1 |  DONG J W,  XIAO X M,  MENARGUEZ M A, et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine[J]. Remote sensing of environment, 2016, 185: 142-154. | 
																													
																						| 2 |  JEONG S, KO J,  BAN J O, et al. Deep learning-enhanced remote sensing-integrated crop modeling for rice yield prediction[J]. Ecological informatics, 2024, 84: ID 102886. | 
																													
																						| 3 |  ZHOU X,  ZHENG H B,  XU X Q, et al. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery[J]. ISPRS journal of photogrammetry and remote sensing, 2017, 130: 246-255. | 
																													
																						| 4 |  YU W G,  YANG G X,  LI D, et al. Improved prediction of rice yield at field and county levels by synergistic use of SAR, optical and meteorological data[J]. Agricultural and forest meteorology, 2023, 342: ID 109729. | 
																													
																						| 5 |  THORP K R,  DRAJAT D. Deep machine learning with Sentinel satellite data to map paddy rice production stages across West Java, Indonesia[J]. Remote sensing of environment, 2021, 265: ID 112679. | 
																													
																						| 6 |  ZHANG Y,  YAN W J,  YANG B, et al. Estimation of rice yield from a C-band radar remote sensing image by integrating a physical scattering model and an optimization algorithm[J]. Precision agriculture, 2020, 21(2): 245-263. | 
																													
																						| 7 |  HE J Y,  ZHANG N,  SU X, et al. Estimating leaf area index with a new vegetation index considering the influence of rice panicles[J]. Remote sensing, 2019, 11(15): ID 1809. | 
																													
																						| 8 |  LIU S Z,  ZENG W Z,  WU L F, et al. Simulating the leaf area index of rice from multispectral images[J]. Remote sensing, 2021, 13(18): ID 3663. | 
																													
																						| 9 |  RYU J H, OH D, KO J, et al. Remote sensing-based evaluation of heat stress damage on paddy rice using NDVI and PRI measured at leaf and canopy scales[J]. Agronomy, 2022, 12(8): ID 1972. | 
																													
																						| 10 |  RANJAN A K,  PARIDA B R. Predicting paddy yield at spatial scale using optical and Synthetic Aperture Radar (SAR) based satellite data in conjunction with field-based Crop Cutting Experiment (CCE) data[J]. International journal of remote sensing, 2021, 42(6): 2046-2071. | 
																													
																						| 11 |  HUANG Y, RYU Y,  JIANG C Y, et al. BESS-Rice: A remote sensing derived and biophysical process-based rice productivity simulation model[J]. Agricultural and forest meteorology, 2018, 256: 253-269. | 
																													
																						| 12 |  SHEN Y Y,  YAN Z Y,  YANG Y J, et al. Application of UAV-borne visible-infared pushbroom imaging hyperspectral for rice yield estimation using feature selection regression methods[J]. Sustainability, 2024, 16(2): ID 632. | 
																													
																						| 13 |  FU T Y,  TIAN S F,  ZHAN Q. Phenological analysis and yield estimation of rice based on multi-spectral and SAR data in Maha Sarakham, Thailand[J]. Journal of spatial science, 2024, 69(1): 149-165. | 
																													
																						| 14 |  WU X X,  WASHAYA P,  LIU L, et al. Rice yield estimation based on spaceborne SAR: A review from 1988 to 2018[J]. IEEE access, 2020, 8: 157462-157469. | 
																													
																						| 15 |  VERGER A,  VIGNEAU N,  CHÉRON C, et al. Green area index from an unmanned aerial system over wheat and rapeseed crops[J]. Remote sensing of environment, 2014, 152: 654-664. | 
																													
																						| 16 |  GOSWAMI S,  CHOUDHARY S S,  CHATTERJEE C, et al. Estimation of nitrogen status and yield of rice crop using unmanned aerial vehicle equipped with multispectral camera[J]. Journal of applied remote sensing, 2021, 15(4): ID 042407. | 
																													
																						| 17 |  WEI J,  CUI Y L,  LUO W Q, et al. Mapping paddy rice distribution and cropping intensity in China from 2014 to 2019 with landsat images, effective flood signals, and google earth engine[J]. Remote sensing, 2022, 14(3): ID 759. | 
																													
																						| 18 |  GUO Y C,  REN H R. Remote sensing monitoring of maize and paddy rice planting area using GF-6 WFV red edge features[J]. Computers and electronics in agriculture, 2023, 207: ID 107714. | 
																													
																						| 19 |  WANG J,  SI H P,  GAO Z, et al. Winter wheat yield prediction using an LSTM model from MODIS LAI products[J]. Agriculture, 2022, 12(10): ID 1707. | 
																													
																						| 20 |  SAINI P,  NAGPAL B. Spatiotemporal Landsat-Sentinel-2 satellite imagery-based hybrid deep neural network for paddy crop prediction using Google Earth Engine[J]. Advances in space research, 2024, 73(10): 4988-5004. | 
																													
																						| 21 |  BARIDEH R,  NASIMI F. Relationship between training sample size and rice mapping accuracy using Sentinels 1 and 2[J]. Journal of the Indian society of remote sensing, 2025, 53(3): 923-931. | 
																													
																						| 22 | SAH S,  HALDAR D,  SINGH R N, et al. Rice yield prediction through integration of biophysical parameters with SAR and optical remote sensing data using machine learning models[J]. Scientific reports, 2024, 14: ID 21674. | 
																													
																						| 23 |  LI H P,  HUANG J J,  ZHANG C, et al. An efficient and generalisable approach for mapping paddy rice fields based on their unique spectra during the transplanting period leveraging the CIE colour space[J]. Remote sensing of environment, 2024, 313: ID 114381. | 
																													
																						| 24 |  WANG J,  HUANG J F,  WANG X Z, et al. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images[J]. Journal of Zhejiang university-SCIENCE B, 2015, 16(10): 832-844. | 
																													
																						| 25 |  PADALA V K,  VENKATESH Y N,  RAJNA S, et al. Incidence of pest and natural enemies in direct seeded rice and transplanted rice[J]. National academy science letters, 2024, 47(5): 467-470. | 
																													
																						| 26 |  GILARDELLI C,  STELLA T,  CONFALONIERI R, et al. Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data[J]. European journal of agronomy, 2019, 103: 108-116. | 
																													
																						| 27 | 郑网宇, 陈功磊, 冯冰, 等. 精确施肥对水稻产量及氮肥利用率的影响[J]. 农村实用技术, 2020(12): 80-82. | 
																													
																						| 28 |  SAUNOIS M,  STAVERT A R,  POULTER B, et al. The global methane budget 2000-2017[J]. Earth system science data, 2020, 12(3): 1561-1623. | 
																													
																						| 29 | 周金晓, 石鑫, 袁会珠, 等. 植保无人飞机施药防治农作物病虫害研究进展[J]. 现代农药, 2023, 22(3): 29-36. | 
																													
																						|  |  ZHOU J X,  SHI X,  YUAN H Z, et al. Research progress of plant protection unmanned aerial vehicles (UAVs) in the crop diseases and pests control[J]. Modern agrochemicals, 2023, 22(3): 29-36. | 
																													
																						| 30 | 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7. | 
																													
																						|  |  ZHAO C J. State-of-the-art and recommended developmental strategic objectivs of smart agriculture[J]. Smart agriculture, 2019, 1(1): 1-7. | 
																													
																						| 31 |  KONG Q Y,  KURIYAN K,  SHAH N, et al. Development of a responsive optimisation framework for decision-making in precision agriculture[J]. Computers & chemical engineering, 2019, 131: ID 106585. | 
																													
																						| 32 |  ULLAH SARKAR M I,  JAHAN A,  HOSSAIN A T M S, et al. Effect of nutrient omission on rice yield in a wetland double rice cropping system[J]. Journal of plant nutrition, 2023, 46(2): 312-320. | 
																													
																						| 33 |  FANG H S,  LIANG S L,  CHEN Y Z, et al. A comprehensive review of rice mapping from satellite data: Algorithms, product characteristics and consistency assessment[J]. Science of remote sensing, 2024, 10: ID 100172. | 
																													
																						| 34 |  ZHAO R K,  WANG Y,  LI Y C. High-resolution ratoon rice monitoring under cloudy conditions with fused time-series optical dataset and threshold model[J]. Remote sensing, 2023, 15(17): ID 4167. | 
																													
																						| 35 |  XIAO X,  BOLES S,  FROLKING S, et al. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data[J]. International journal of remote sensing, 2002, 23(15): 3009-3022. | 
																													
																						| 36 |  XIAO X M,  BOLES S,  LIU J Y, et al. Mapping paddy rice agriculture in Southern China using multi-temporal MODIS images[J]. Remote sensing of environment, 2005, 95(4): 480-492. | 
																													
																						| 37 |  ZHANG X W,  QIU F,  QIN F. Identification and mapping of winter wheat by integrating temporal change information and Kullback-Leibler divergence[J]. International journal of applied earth observation and geoinformation, 2019, 76: 26-39. | 
																													
																						| 38 |  WANG L H,  MA H,  LI J L, et al. An automated extraction of small- and middle-sized rice fields under complex terrain based on SAR time series: A case study of Chongqing[J]. Computers and electronics in agriculture, 2022, 200: ID 107232. | 
																													
																						| 39 |  JIANG Q,  TANG Z G,  ZHOU L H, et al. Mapping paddy rice planting area in Dongting lake area combining time series Sentinel-1 and Sentinel-2 images[J]. Remote sensing, 2023, 15(11): ID 2794. | 
																													
																						| 40 | 何泽, 李世华. 水稻雷达遥感监测研究进展[J]. 遥感学报, 2023, 27(10): 2363-2382. | 
																													
																						|  |  HE Z,  LI S H. Research progress on rice radar remote sensing monitoring[J]. Journal of remote sensing, 2023, 27(10): 2363-2382. | 
																													
																						| 41 |  WANG M,  WANG J,  CHEN L, et al. Mapping paddy rice and rice phenology with Sentinel-1 SAR time series using a unified dynamic programming framework[J]. Open geosciences, 2022, 14(1): 414-428. | 
																													
																						| 42 |  SAFARI M M,  MALIAN A. Plant disease mapping in paddy growing stages using remotely sensed data[J]. Environmental earth sciences, 2024, 84(1): ID 1. | 
																													
																						| 43 |  ZHANG H G,  HE B B,  XING J. Mapping paddy rice in complex landscapes with landsat time series data and superpixel-based deep learning method[J]. Remote sensing, 2022, 14(15): ID 3721. | 
																													
																						| 44 |  JIANG X Q,  DU H Q,  GAO S, et al. An automatic rice mapping method based on an integrated time-series gradient boosting tree using GF-6 and Sentinel-2 images[J]. GIScience & remote sensing, 2024, 61(1): ID 2367807. | 
																													
																						| 45 |  AISHWARYA HEGDE A,  UMESH P,  TAHILIANI M P. Automated rice mapping using multitemporal Sentinel-1 SAR imagery using dynamic threshold and slope-based index methods[J]. Remote sensing applications: Society and environment, 2025, 37: ID 101410. | 
																													
																						| 46 |  SAKAMOTO T,  YOKOZAWA M,  TORITANI H, et al. A crop phenology detection method using time-series MODIS data[J]. Remote sensing of environment, 2005, 96(3/4): 366-374. | 
																													
																						| 47 |  HUANG X,  LIU J H,  ZHU W Q, et al. The optimal threshold and vegetation index time series for retrieving crop phenology based on a modified dynamic threshold method[J]. Remote sensing, 2019, 11(23): ID 2725. | 
																													
																						| 48 |  SAKAMOTO T,  WARDLOW B D,  GITELSON A A, et al. A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data[J]. Remote sensing of environment, 2010, 114(10): 2146-2159. | 
																													
																						| 49 |  JUMI J,  ZAENUDDIN A,  MULYONO T. Model for identification of rice type using combination of shape and color features[J]. IOP conference series: Materials science and engineering, 2021, 1108(1): ID 012038. | 
																													
																						| 50 |  LIAO S C. A improved shape model for phenology detection of early rice[C]// 2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, New Jersey, USA: IEEE, 2022: 6252-6255. | 
																													
																						| 51 | MARSUJITULLAH,  ZAINUDDIN Z,  MANJANG S, et al. Rice farming age detection use drone based on SVM histogram image classification[J]. Journal of Physics: Conference Series, 2019, 1198(9): ID 092001. | 
																													
																						| 52 |  FADHLULLAH R,  REDDY P,  GABOR K, et al. Mapping of rice growth phases and bare land using Landsat-8 OLI with machine learning[J]. International journal of remote sensing, 2020, 41(21): 8428-8452. | 
																													
																						| 53 | 冯健昭, 潘永琪, 熊悦淞, 等. 基于mRMR-XGBoost的水稻关键生育期识别[J]. 农业工程学报, 2024, 40(15): 111-118.. | 
																													
																						|  |  FENG J Z,  PAN Y Q,  XIONG Y S, et al. Rice key growth stage identification based on mRMR-XGBoost[J]. Transactions of the Chinese society of agricultural engineering, 2024, 40(15): 111-118. | 
																													
																						| 54 |  RASTI S,  BLEAKLEY C J,  HOLDEN N M, et al. A survey of high resolution image processing techniques for cereal crop growth monitoring[J]. Information processing in agriculture, 2022, 9(2): 300-315. | 
																													
																						| 55 |  BAI X D,  CAO Z G,  ZHAO L D, et al. Rice heading stage automatic observation by multi-classifier cascade based rice spike detection method[J]. Agricultural and forest meteorology, 2018, 259: 260-270. | 
																													
																						| 56 |  ZHANG Y Q,  XIAO D Q,  LIU Y F. Automatic identification algorithm of the rice tiller period based on PCA and SVM[J]. IEEE access, 2021, 9: 86843-86854. | 
																													
																						| 57 | 高心怡, 池泓, 黄进良, 等. 水稻遥感制图研究综述[J]. 遥感学报, 2024, 28(9): 2144-2169. | 
																													
																						|  |  GAO X Y,  CHI H,  HUANG J L, et al. Review of remote sensing mapping for rice[J]. Journal of remote sensing, 2024, 28(9): 2144-2169. | 
																													
																						| 58 |  QIN J L,  HU T C,  YUAN J H, et al. Deep-learning-based rice phenological stage recognition[J]. Remote sensing, 2023, 15(11): ID 2891. | 
																													
																						| 59 |  LIU K X,  WANG J,  ZHANG K, et al. A lightweight recognition method for rice growth period based on improved YOLOv5s[J]. Sensors, 2023, 23(15): ID 6738. | 
																													
																						| 60 |  WATSON D J. Comparative physiological studies on the growth of field crops: II. The effect of varying nutrient supply on net assimilation rate and leaf area[J]. Annals of botany, 1947, 11(4): 375-407. | 
																													
																						| 61 |  XU X Q,  LU J S,  ZHANG N, et al. Inversion of rice canopy chlorophyll content and leaf area index based on coupling of radiative transfer and Bayesian network models[J]. ISPRS journal of photogrammetry and remote sensing, 2019, 150: 185-196. | 
																													
																						| 62 |  YANG J,  SUN J,  DU L, et al. Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice[J]. Optics express, 2017, 25(4): ID 3743. | 
																													
																						| 63 | 曹中盛, 李艳大, 黄俊宝, 等. 基于无人机数码影像的水稻叶面积指数监测[J]. 中国水稻科学, 2022, 36(3): 308-317. | 
																													
																						|  |  CAO Z S,  LI Y D,  HUANG J B, et al. Monitoring rice leaf area index based on unmanned aerial vehicle(UAV) digital images[J]. Chinese journal of rice science, 2022, 36(3): 308-317. | 
																													
																						| 64 |  LIU Y,  WANG B,  SHENG Q H, et al. Dual-polarization SAR rice growth model: A modeling approach for monitoring plant height by combining crop growth patterns with spatiotemporal SAR data[J]. Computers and electronics in agriculture, 2023, 215: ID 108358. | 
																													
																						| 65 |  PREY L,  SCHMIDHALTER U. Simulation of satellite reflectance data using high-frequency ground based hyperspectral canopy measurements for in-season estimation of grain yield and grain nitrogen status in winter wheat[J]. ISPRS journal of photogrammetry and remote sensing, 2019, 149: 176-187. | 
																													
																						| 66 |  YU Y,  YU H Y,  LI X K, et al. Prediction of potassium content in rice leaves based on spectral features and random forests[J]. Agronomy, 2023, 13(9): ID 2337. | 
																													
																						| 67 |  ZHA H N,  MIAO Y X,  WANG T T, et al. Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning[J]. Remote sensing, 2020, 12(2): ID 215. | 
																													
																						| 68 |  HU T,  LIU Z H,  HU R, et al. Convolutional neural network-based estimation of nitrogen content in regenerating rice leaves[J]. Agronomy, 2024, 14(7): ID 1422. | 
																													
																						| 69 |  TIAN X,  CAO W F,  LIU S W, et al. U + LSTM-F: A data-driven growth process model of rice seedlings[J]. Ecological informatics, 2024, 84: ID 102922. | 
																													
																						| 70 |  JACQUEMOUD S,  VERHOEF W,  BARET F, et al. PROSPECT+SAIL models: A review of use for vegetation characterization[J]. Remote sensing of environment, 2009, 113: S56-S66. | 
																													
																						| 71 |  ZHANG X N,  JIAO Z T,  DONG Y D, et al. Potential investigation of linking PROSAIL with the ross-Li BRDF model for vegetation characterization[J]. Remote sensing, 2018, 10(3): ID 437. | 
																													
																						| 72 |  DE SÁ N C,  BARATCHI M,  HAUSER L T, et al. Exploring the impact of noise on hybrid inversion of PROSAIL RTM on Sentinel-2 data[J]. Remote sensing, 2021, 13(4): ID 648. | 
																													
																						| 73 |  LI D,  WU Y P,  BERGER K, et al. Estimating canopy nitrogen content by coupling PROSAIL-PRO with a nitrogen allocation model[J]. International journal of applied earth observation and geoinformation, 2024, 135: ID 104280. | 
																													
																						| 74 |  ZHU X H,  LI C R,  TANG L L. Look-up-table approach for leaf area index retrieval from remotely sensed data based on scale information[J]. Optical engineering, 2018, 57(3): ID 033104. | 
																													
																						| 75 |  JIA M,  TONG L,  CHEN Y, et al. Rice biomass retrieval from multitemporal ground-based scatterometer data and RADARSAT-2 images using neural networks[J]. Journal of applied remote sensing, 2013, 7 (1): ID 073509. | 
																													
																						| 76 |  LIU Y,  CHEN K S,  XU P, et al. Modeling and characteristics of microwave backscattering from rice canopy over growth stages[J]. IEEE transactions on geoscience and remote sensing, 2016, 54(11): 6757-6770. | 
																													
																						| 77 |  TAN L F,  CHEN Y,  JIA M Q, et al. Rice biomass retrieval from advanced synthetic aperture radar image based on radar backscattering measurement[J]. Journal of applied remote sensing, 2015, 9(1): ID 097091. | 
																													
																						| 78 |  YANG Z,  LI K,  SHAO Y, et al. Estimation of paddy rice variables with a modified water cloud model and improved polarimetric decomposition using multi-temporal RADARSAT-2 images[J]. Remote sensing, 2016, 8(10): ID 878. | 
																													
																						| 79 |  GUO X Y,  LI K,  SHAO Y, et al. Inversion of rice biophysical parameters using simulated compact polarimetric SAR C-band data[J]. Sensors, 2018, 18(7): ID 2271. | 
																													
																						| 80 |  MA Y,  JIANG Q,  WU X T, et al. Monitoring hybrid rice phenology at initial heading stage based on low-altitude remote sensing data[J]. Remote sensing, 2021, 13(1): ID 86. | 
																													
																						| 81 |  SHAUKAT M,  MUHAMMAD S,  MAAS E D V L, et al. Predicting methane emissions from paddy rice soils under biochar and nitrogen addition using DNDC model[J]. Ecological modelling, 2022, 466: ID 109896. | 
																													
																						| 82 |  WU X X,  LIU L,  GUO X Y, et al. Comparison of water cloud models with different layers for rice yield estimation from a single TerraSAR image[J]. Remote sensing letters, 2020, 11(9): 876-882. | 
																													
																						| 83 |  WANG H,  ZHU Y,  LI W L, et al. Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment[J]. Journal of applied remote sensing, 2014, 8(1): ID 083674. | 
																													
																						| 84 |  LI S L,  JIN Z Y,  BAI J C, et al. Research on fertilization decision method for rice tillering stage based on the coupling of UAV hyperspectral remote sensing and WOFOST[J]. Frontiers in plant science, 2024, 15: ID 1405239. | 
																													
																						| 85 |  YANG G D,  LI Y X,  YUAN S, et al. Enhancing direct-seeded rice yield prediction using UAV-derived features acquired during the reproductive phase[J]. Precision agriculture, 2024, 25(2): 1014-1037. | 
																													
																						| 86 |  ZHANG Y,  JIANG Y Y,  XU B, et al. Study on the estimation of leaf area index in rice based on UAV RGB and multispectral data[J]. Remote sensing, 2024, 16(16): ID 3049. | 
																													
																						| 87 |  FU X,  ZHAO G N,  WU W C, et al. Assessing the impacts of natural disasters on rice production in Jiangxi, China[J]. International journal of remote sensing, 2022, 43(5): 1919-1941. | 
																													
																						| 88 |  LIU T,  LI R,  ZHONG X C, et al. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images[J]. Agricultural and forest meteorology, 2018, 252: 144-154. | 
																													
																						| 89 |  DAI X M,  CHEN S S,  JIA K, et al. A decision-tree approach to identifying paddy rice lodging with multiple pieces of polarization information derived from Sentinel-1[J]. Remote sensing, 2023, 15(1): ID 240. | 
																													
																						| 90 |  SUN Q,  GU X H,  CHEN L P, et al. Monitoring rice lodging grade via Sentinel-2A images based on change vector analysis[J]. International journal of remote sensing, 2022, 43(5): 1549-1576. | 
																													
																						| 91 |  YANG C Y,  YANG M D,  TSENG W C, et al. Assessment of rice developmental stage using time series UAV imagery for variable irrigation management[J]. Sensors, 2020, 20(18): ID 5354. | 
																													
																						| 92 |  LIU R Q,  DONG J W,  GE Y, et al. Tracking paddy rice acreage, flooding impacts, and mitigations during El Niño flooding events using Sentinel-1/2 imagery and cloud computing[J]. ISPRS journal of photogrammetry and remote sensing, 2024, 217: 165-178. | 
																													
																						| 93 |  HAN J C,  ZHANG Z,  XU J L, et al. Threat of low-frequency high-intensity floods to global cropland and crop yields[J]. Nature sustainability, 2024, 7(8): 994-1006. | 
																													
																						| 94 | 杨舒畅, 申双和. 水稻高温热害及其风险评估的研究进展[J]. 农学学报, 2016, 6(2): 122-125. | 
																													
																						|  |  YANG S C,  SHEN S H. Research progress on rice high-temperature heat damage and its risk assessment[J]. Acta agronomica sinica, 2016, 6(2): 122-125. | 
																													
																						| 95 | 张丽文, 刘志雄, 肖玮钰, 等. RS和GIS支持下的全天候气温构建在湖北水稻低温冷害监测中的应用[J]. 湖北农业科学, 2017, 56(24): 4757-4761, 4776. | 
																													
																						|  |  ZHANG L W,  LIU Z X,  XIAO W Y, et al. Monitoring of rice chilling damages by all-weather near-surface air temperature construction based on RS and GIS in Hubei province[J]. Hubei agricultural sciences, 2017, 56(24): 4757-4761, 4776. | 
																													
																						| 96 | 石涛, 杨太明, 黄勇, 等. 无人机多光谱遥感监测水稻高温胁迫的关键技术[J]. 中国农业气象, 2020, 41(9): 597-604. | 
																													
																						|  |  SHI T,  YANG T M,  HUANG Y, et al. Key technologies of monitoring high temperature stress to rice by portable UAV multi spectral remote sensing[J]. Chinese journal of agrometeorology, 2020, 41(9): 597-604. | 
																													
																						| 97 | 于省元, 李鹏伟. 黑龙江省水稻低温冷害遥感监测技术研究[J]. 现代化农业, 2022(4): 52-54. | 
																													
																						| 98 | 袁德宝, 张冰瑞, 叶回春, 等. 水稻病虫害遥感监测与预测研究进展[J]. 遥感技术与应用, 2023, 38(1): 97-107. | 
																													
																						|  |  YUAN D B,  ZHANG B R,  YE H C, et al. Advances in remote sensing monitoring and prediction of rice diseases and pests[J]. Remote sensing technology and application, 2023, 38(1): 97-107. | 
																													
																						| 99 | 夏雪, 孙琦鑫, 侍啸, 等. 基于轻量级无锚点深度卷积神经网络的树上苹果检测模型[J]. 智慧农业(中英文), 2020, 2(1): 99-110. | 
																													
																						|  |  XIA X,  SUN Q X,  SHI X, et al. Apple detection model based on lightweight anchor-free deep convolutional neural network[J]. Smart agriculture, 2020, 2(1): 99-110. | 
																													
																						| 100 |  WANG L H,  LAN Y B,  YUE X J, et al. Vision-based adaptive variable rate spraying approach for unmanned aerial vehicles[J]. International journal of agricultural and biological engineering, 2019, 12(3): 18-26. | 
																													
																						| 101 |  AINUNNISA I,  HAERANI H. The identification of pests and diseases of rice plants using Sentinel-2 satellite imagery data at the end of the vegetative stage[J]. IOP conference series: Earth and environmental science, 2023, 1230(1): ID 012148. | 
																													
																						| 102 |  ZHENG Q,  HUANG W J,  XIA Q, et al. Remote sensing monitoring of rice diseases and pests from different data sources: A review[J]. Agronomy, 2023, 13(7): ID 1851. | 
																													
																						| 103 |  JEONG W,  KIM K H. Determining the minimum data size for the development of artificial neural network-based prediction models for rice pests in Korea[J]. Computers and electronics in agriculture, 2024, 220: ID 108865. | 
																													
																						| 104 |  RICHETTI J,  JUDGE J,  BOOTE K J, et al. Using phenology-based enhanced vegetation index and machine learning for soybean yield estimation in Paraná State, Brazil[J]. Journal of applied remote sensing, 2018, 12(2): ID 026029. | 
																													
																						| 105 |  GUAN K Y,  JIN Z N,  PENG B, et al. A scalable framework for quantifying field-level agricultural carbon outcomes[J]. Earth-science reviews, 2023, 243: ID 104462. | 
																													
																						| 106 |  BHATTACHARYA K R,  SOWBHAGYA C M,  INDUDHARA SWAMY Y M. Importance of insoluble amylose as a determinant of rice quality[J]. Journal of the science of food and agriculture, 1978, 29(4): 359-364. | 
																													
																						| 107 |  SON N T,  CHEN C F,  CHANG L Y, et al. A logistic-based method for rice monitoring from multitemporal MODIS-Landsat fusion data[J]. European journal of remote sensing, 2016, 49(1): 39-56. | 
																													
																						| 108 |  ZHANG C H,  KOVACS J M. The application of small unmanned aerial systems for precision agriculture: A review[J]. Precision agriculture, 2012, 13(6): 693-712. | 
																													
																						| 109 |  ZHOU L F,  MENG R,  YU X, et al. Improved yield prediction of ratoon rice using unmanned aerial vehicle-based multi-temporal feature method[J]. Rice science, 2023, 30(3): 247-256. | 
																													
																						| 110 |  JEONG S, KO J,  CHOI J, et al. Application of an unmanned aerial system for monitoring paddy productivity using the GRAMI-rice model[J]. International journal of remote sensing, 2018, 39(8): 2441-2462. | 
																													
																						| 111 |  CLAUSS K,  OTTINGER M,  LEINENKUGEL P, et al. Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data[J]. International journal of applied earth observation and geoinformation, 2018, 73: 574-585. | 
																													
																						| 112 |  YU J,  TAN S,  ZHAN J G. Multiple model averaging methods for predicting regional rice yield[J]. Agronomy journal, 2023, 115(2): 635-646. | 
																													
																						| 113 |  RADANIELSON A M,  GAYDON D S,  LI T, et al. Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza [J]. European journal of agronomy, 2018, 100: 44-55. | 
																													
																						| 114 |  MU H W,  ZHOU L,  DANG X W, et al. Winter wheat yield estimation from multitemporal remote sensing images based on convolutional neural networks[C]// 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). Piscataway, New Jersey, USA: IEEE, 2019. | 
																													
																						| 115 |  HOSSAIN M A,  UDDIN M N,  HOSSAIN M A, et al. Predicting rice yield for Bangladesh by exploiting weather conditions[C]// 2017 International Conference on Information and Communication Technology Convergence (ICTC). Piscataway, New Jersey, USA: IEEE, 2017: 589-594. | 
																													
																						| 116 |  JEONG S, KO J,  SHIN T, et al. Incorporation of machine learning and deep neural network approaches into a remote sensing-integrated crop model for the simulation of rice growth[J]. Scientific reports, 2022, 12: ID 9030. | 
																													
																						| 117 |  JEONG S, KO J,  YEOM J M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea[J]. Science of the total environment, 2022, 802: ID 149726. | 
																													
																						| 118 |  FERNANDEZ-BELTRAN R,  BAIDAR T,  KANG J, et al. Rice-yield prediction with multi-temporal Sentinel-2 data and 3D CNN: A case study in Nepal[J]. Remote sensing, 2021, 13(7): ID 1391. | 
																													
																						| 119 |  YANG Q,  SHI L S,  HAN J Y, et al. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images[J]. Field crops research, 2019, 235: 142-153. | 
																													
																						| 120 |  HUANG J X,  TIAN L Y,  LIANG S L, et al. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model[J]. Agricultural and forest meteorology, 2015, 204: 106-121. | 
																													
																						| 121 |  MA Y C,  LIANG S Z,  MYERS D B, et al. Subfield-level crop yield mapping without ground truth data: A scale transfer framework[J]. Remote sensing of environment, 2024, 315: ID 114427. | 
																													
																						| 122 |  WANG F M,  YI Q X,  XIE L L, et al. Non-destructive monitoring of amylose content in rice by UAV-based hyperspectral images[J]. Frontiers in plant science, 2022, 13: ID 1035379. | 
																													
																						| 123 |  XUE H Y,  XU X G,  ZHU Q Z, et al. Rice yield and quality estimation coupling hierarchical linear model with remote sensing[J]. Computers and electronics in agriculture, 2024, 218: ID 108731. | 
																													
																						| 124 |  FISCHER G,  NACHTERGAELE F,  PRIELER S, et al.  Global agro-ecological zone V4–model documentation [S]. FAO. 2021. | 
																													
																						| 125 | 王珑, 何英彬, 尤飞, 等. 作物种植适宜性评价尺度及评价方法分析[J]. 中国农业资源与区划, 2024, 45(9): 214-221. | 
																													
																						|  |  WANG L,  HE Y B,  YOU F, et al. Analysis of the evaluation scale and method for the suitability of crop planting[J]. Chinese journal of agricultural resources and regional planning, 2024, 45(9): 214-221. | 
																													
																						| 126 | 王杏锋, 李代超, 吴升, 等. 水稻种植环境综合适宜性评价方法研究[J]. 地球信息科学学报, 2021, 23(8): 1484-1496. | 
																													
																						|  |  WANG X F LI D C,  WU S, et al. Study on the comprehensive suitability evaluation method of rice planting environment[J]. Journal of geo-information science, 2021, 23(8): 1484-1496. | 
																													
																						| 127 |  LI X L,  WU K N,  HAO S H, et al. Mapping cropland suitability in China using optimized MaxEnt model[J]. Field crops research, 2023, 302: ID 109064. | 
																													
																						| 128 |  WU Y T,  QIU X L,  ZHANG K, et al. A rice model system for determining suitable sowing and transplanting dates[J]. Agronomy, 2020, 10(4): ID 604. | 
																													
																						| 129 | 杨晓磊, 梁子豪, 刘文超, 等. 优化施肥对水稻产量和肥料利用率的影响[J]. 上海农业学报, 2024, 40(5): 1-7. | 
																													
																						|  |  YANG X L,  LIANG Z H,  LIU W C, et al. Impact of optimized fertilization on rice yield and fertilizer use efficiency[J]. Shanghai agricultural journal, 2024, 40(5): 1-7. | 
																													
																						| 130 | 剧成欣, 陈尧杰, 赵步洪, 等. 实地氮肥管理对不同氮响应粳稻品种产量和品质的影响[J]. 中国水稻科学, 2018, 32(3): 237-246. | 
																													
																						|  |  JU C X,  CHEN Y J,  ZHAO B H, et al. Field nitrogen management on yield and quality of different nitrogen-responsive japonica rice varieties[J]. Chinese journal of rice science, 2018, 32(3): 237-246. | 
																													
																						| 131 |  MULLEN R W,  FREEMAN K W,  RAUN W R, et al. Identifying an in-season response index and the potential to increase wheat yield with nitrogen[J]. Agronomy journal, 2003, 95(2): 347-351. | 
																													
																						| 132 |  HUANG S Y,  MIAO Y X,  YUAN F, et al. Potential of RapidEye and WorldView-2 satellite data for improving rice nitrogen status monitoring at different growth stages[J]. Remote sensing, 2017, 9(3): 227. | 
																													
																						| 133 |  PENG S B,  BURESH R J,  HUANG J L, et al. Improving nitrogen fertilization in rice by sitespecific N management. A review[J]. Agronomy for sustainable development, 2010, 30(3): 649-656. | 
																													
																						| 134 |  YANG M,  XU X G,  LI Z Y, et al. Remote sensing prescription for rice nitrogen fertilizer recommendation based on improved NFOA model[J]. Agronomy, 2022, 12(8): ID 1804. | 
																													
																						| 135 |  ULRICH A. Physiological bases for assessing the nutritional requirements of plants[J]. Annual review of plant physiology, 1952, 3: 207-228. | 
																													
																						| 136 |  GREENWOOD D J,  NEETESON J J,  DRAYCOTT A. Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial environment[J]. Plant and soil, 1986, 91(3): 281-301. | 
																													
																						| 137 |  FASSA V,  PRICCA N,  CABASSI G, et al. Site-specific nitrogen recommendations' empirical algorithm for maize crop based on the fusion of soil and vegetation maps[J]. Computers and electronics in agriculture, 2022, 203: ID 107479. | 
																													
																						| 138 |  WANG J W,  LOPEZ-LOZANO R,  WEISS M, et al. Crop specific inversion of PROSAIL to retrieve green area index (GAI) from several decametric satellites using a Bayesian framework[J]. Remote sensing of environment, 2022, 278: ID 113085. | 
																													
																						| 139 |  LU J J,  MIAO Y X,  SHI W, et al. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor[J]. Scientific reports, 2017, 7: ID 14073. | 
																													
																						| 140 |  WANG Y,  YE Y L,  HUANG Y F, et al. Development of nitrogen fertilizer topdressing model for winter wheat based on critical nitrogen dilution curve[J]. International journal of plant production, 2020, 14(1): 165-175. | 
																													
																						| 141 |  HUANG S Y,  MIAO Y X,  ZHAO G M, et al. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in NorthEast China[J]. Remote sensing, 2015, 7(8): 10646-10667. | 
																													
																						| 142 |  LAMPAYAN R M,  REJESUS R M,  SINGLETON G R, et al. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice[J]. Field crops research, 2015, 170: 95-108. | 
																													
																						| 143 |  GRAHAM-ACQUAAH S,  SIEBENMORGEN T J,  REBA M L, et al. Impact of alternative irrigation practices on rice quality[J]. Cereal chemistry, 2019, 96(5): 815-823. | 
																													
																						| 144 |  AKBAR G,  ISLAM Z,  KHALIL S H, et al. Enhancing the irrigation water productivity of rice farming: A study on sowing and irrigation practices in Pakistan[J]. Irrigation and drainage, 2025, 74(1): 332-341. | 
																													
																						| 145 |  YOUSEFIAN M,  SHAHNAZARI A,  AHMADI M Z, et al. The effect of irrigation management on rice grain yield, irrigation water productivity and methane emissions in northern Iran[J]. Irrigation and drainage, 2024, 73(1): 230-243. | 
																													
																						| 146 |  ATWILL R L,  SPENCER G D,  BOND J A, et al. Establishment of thresholds for alternate wetting and drying irrigation management in rice[J]. Agronomy journal, 2023, 115(4): 1735-1745. | 
																													
																						| 147 |  EISAPOUR NAKHJIRI S,  ASHOURI M,  SADEGHI S M, et al. The effect of irrigation management and nitrogen fertilizer on grain yield and water-use efficiency of rice cultivars in northern Iran[J]. Gesunde pflanzen, 2021, 73(3): 359-366. | 
																													
																						| 148 |  REAVIS C W,  REBA M L,  RUNKLE B R K. The effects of alternate wetting and drying irrigation on water use efficiency in Mid-South rice[J]. Agricultural and forest meteorology, 2024, 353: ID 110069. | 
																													
																						| 149 |  WINTER J M,  YOUNG C A,  MEHTA V K, et al. Integrating water supply constraints into irrigated agricultural simulations of California[J]. Environmental modelling & software, 2017, 96: 335-346. | 
																													
																						| 150 |  YE Q,  YANG X G,  DAI S W, et al. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in Southern China[J]. Agricultural water management, 2015, 159: 35-44. | 
																													
																						| 151 |  ROWSHON M K,  DLAMINI N S,  MOJID M A, et al. Modeling climate-smart decision support system (CSDSS) for analyzing water demand of a large-scale rice irrigation scheme[J]. Agricultural water management, 2019, 216: 138-152. | 
																													
																						| 152 | 郝子源, 李欣泽, 孟超, 等. 基于强化学习的植保无人机自适应施药决策系统[J]. 农业工程技术, 2023, 43(26): 126. | 
																													
																						| 153 | 陈志刚, 陈梦溪, 魏新华, 等. 基于北斗定位的农田变量处方施药喷雾系统[J]. 排灌机械工程学报, 2015, 33(11): 965-970. | 
																													
																						|  |  CHEN Z G,  CHEN M X,  WEI X H, et al. Field variable prescription spraying system based on beidou positioning [J]. Journal of drainage and irrigation machinery engineering, 2015, 33(11): 965-970. | 
																													
																						| 154 | 刘子文. 水稻变量施药信息处理系统设计[D]. 镇江: 江苏大学, 2019. | 
																													
																						|  |  LIU Z W. Design of a variable rate spraying information processing system for rice[D]. Zhenjiang: Jiangsu University, 2019. | 
																													
																						| 155 |  HONG J B,  LAN Y B,  YUE X J, et al. Adaptive target spray system based on machine vision for plant protection UAV[J]. International journal of precision agricultural aviation, 2018, 1(1): 65-71. | 
																													
																						| 156 | 周舟, 王秀, 王俊, 等. 基于GIS的变量喷药决策支持系统 [J]. 农业工程学报, 2008, 24(S2): 123-126. | 
																													
																						|  |  ZHOU Z,  WANG X,  WANG J, et al. Decision support system for variable rate spraying based on GIS[J]. Transactions of the Chinese society of agricultural engineering, 2008, 24(S2): 123-126. |