欢迎您访问《智慧农业(中英文)》官方网站! English

Smart Agriculture ›› 2025, Vol. 7 ›› Issue (2): 95-105.doi: 10.12133/j.smartag.SA202501001

• 专题--粮食生产大数据平台研发与应用 • 上一篇    下一篇

基于改进YOLOv11-Pose的玉米植株骨架及表型参数提取方法

牛子昂, 裘正军()   

  1. 浙江大学 生物系统工程与食品科学学院,浙江 杭州 310058,中国
  • 收稿日期:2024-12-31 出版日期:2025-03-30
  • 作者简介:
    牛子昂,博士研究生,研究方向为作物三维感知与农机导航。E-mail:
  • 通信作者:
    裘正军,博士,教授,研究方向为农业电气化与自动化。E-mail:

Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose

NIU Ziang, QIU Zhengjun()   

  1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
  • Received:2024-12-31 Online:2025-03-30
  • Foundation items:National Key Research and Development Program of China(2023YFD2000101)
  • About author:
    NIU Ziang, E-mail:
  • Corresponding author:
    QIU Zhengjun, E-mail:

摘要:

【目的/意义】 玉米植株骨架和表型参数的精准提取是获取植株生长状态、形态分析及农业管理的重要基础。然而,大田种植环境下的光照变化、复杂背景、叶片遮挡等对骨架和表型参数的提取带来了严峻挑战。本研究提出一种适用于田间的玉米植株骨架和表型参数提取方法,以提升提取的精度与效率,为玉米表型数据获取提供技术支撑。 【方法】 提出了一种基于改进YOLOv11-Pose的多目标关键点检测网络,采用自上而下的检测框架对玉米植株关键点进行检测与骨架重建。通过均匀采样算法设计适用于玉米骨架的关键点表示方法,以优化骨架的任务适应性;同时,分别在网络的骨干、头部加入单头自注意力机制、卷积注意力机制,引导模型关注遮挡区域和粘连部位,从而提高对复杂场景的适应能力。 【结果和讨论】 在田间玉米环境中测试结果表明,当均匀采样关键点数量设置为10时,Fréchet距离达到最低值79.008,既能有效保持原始骨架的形态特征,又能避免冗余点影响,为后续建模提供高效、准确的骨架数据基础。在该设置下,改进YOLOv11-Pose模型的边界框检测精度为0.717;关键点检测的mAP50和mAP50-95分别提升了10.9%和23.8%,单张图片推理耗时52.7 ms。测试结果表明,该模型在复杂田间环境中展现出卓越性能和较低计算成本,在关键点检测任务中具有更高的精度和鲁棒性。研究进一步结合骨架提取结果和空间几何信息,实现株高测量平均绝对误差为2.435 cm,叶龄检测误差小于1个生长时期,叶长测量误差3.482%,验证了所提出的方法在表型参数测量应用方面的有效性和实用性。 【结论】 本研究提出的改进YOLOv11-Pose模型能够高效、精准地提取玉米植株骨架和表型参数,为粮食生产数据获取与精准农业管理提供了技术支持。

关键词: 作物长势, 关键点检测, 注意力机制, 表型参数, 玉米植株骨架, YOLOv11

Abstract:

[Objective] Accurate extraction of maize plant skeletons and phenotypic parameters is fundamental for acquisition of plant growth data, morphological analysis, and agricultural management. However, leaf occlusion and complex backgrounds in dense planting environments pose significant challenges to skeleton and parameters extraction. A maize plant skeleton and phenotypic parameters extraction method suitable for dense field environments was proposed in this research to enhance the extraction precision and efficiency, and provide technical support for maize growth data acquisition. [Methods] An improved YOLOv11-Pose multi-object keypoint detection network was introduced, a top-down detection framework was adopted to detect maize plant keypoints and reconstruct skeletons. A uniform sampling algorithm was used to design a keypoint representation method tailored for maize skeletons and optimize task adaptability. Additionally, a single-head self-attention mechanism and a convolutional block attention module were incorporated to guide the model's focus on occluded regions and connected parts, thereby improve its adaptability to complex scenarios. [Results and Discussion] In dense field maize environments, experimental results showed that when the number of uniformly sampled keypoints was set to 10, the Fréchet distance reached its minimum value of 79.008, effectively preserving the original skeleton's morphological features while avoiding the negative impact of redundant points. Under this configuration, the improved YOLOv11-Pose model achieved a bounding box detection precision of 0.717. The keypoint detection mAP50 and mAP50-95 improved by 10.9% and 23.8%, respectively, compared to the original model, with an inference time of 52.7 ms per image. The results demonstrated the model's superior performance and low computational cost in complex field environments, particularly in keypoint detection tasks with enhanced accuracy and robustness. The study further combined the results of skeleton extraction and spatial geometric information to achieve a plant height measurement mean average error (MAE) of 2.435 cm, the detection error of leaf age was less than one growth period, and the measurement error of leaf length was 3.482%, verifying the effectiveness and practicability of the proposed method in the application of phenotypic parameter measurement. [Conclusion] The proposed improved YOLOv11-Pose model can efficiently and accurately extract maize plant skeletons, meeting the demands of ground-based maize growth data acquisition. The research could provide technical support for phenotypic data acquisition in grain production and precision agricultural management.

Key words: crop growth, keypoint detection, attention mechanism, phenotypic parameter, maize plant skeleton, YOLOv11

中图分类号: