[1] |
张俊飚, 彭子怡, 颜廷武. 我国香菇产业国际贸易发展的现状、问题与对策[J]. 食药用菌, 2022, 30(3): 165-171.
|
|
ZHANG J B, PENG Z Y, YAN T W. Present situation, problems and solutions of international trade development of Lentinula edodes industry in China[J]. Edible and medicinal mushrooms, 2022, 30(3): 165-171.
|
[2] |
曹斌, 张月吟, 高博. 全球香菇产业发展历史、现状及趋势[J]. 食用菌学报, 2024, 31(3): 1-20.
|
|
CAO B, ZHANG Y Y, GAO B. Development history, current situation and trends of global Lentinula edodes industry[J]. Acta edulis fungi, 2024, 31(3): 1-20.
|
[3] |
LIN A, LIU Y F, ZHANG L. Mushroom detection and positioning method based on neural network[C]// 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway, New Jersey, USA: IEEE, 2021: 1174-1178.
|
[4] |
AHMAD I, ARIF M, XU M M, et al. Therapeutic values and nutraceutical properties of shiitake mushroom (Lentinula edodes): A review[J]. Trends in food science & technology, 2023, 134: 123-135.
|
[5] |
王磊磊, 王斌, 李东晓, 等. 基于改进YOLOv5的菇房平菇目标检测与分类研究[J]. 农业工程学报, 2023, 39(17): 163-171.
|
|
WANG L L, WANG B, LI D X, et al. Object detection and classification of Pleurotus ostreatus using improved YOLOv5[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(17): 163-171.
|
[6] |
赵明岩, 吴顺海, 李一欣, 等. 基于改进YOLOv5s的黑皮鸡枞菌检测方法[J]. 农业工程学报, 2023, 39(12): 265-274.
|
|
ZHAO M Y, WU S H, LI Y X, et al. Improved YOLOv5s-based detection method for Termitomyces albuminosus[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(12): 265-274.
|
[7] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
|
[8] |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2980-2988.
|
[9] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]// Computer Vision – ECCV 2016. Cham, Germany: Springer, 2016: 21-37.
|
[10] |
KHANAM R, HUSSAIN M. What is YOLOv5: a deep look into the internal features of the popular object detector[EB/OL]. arXiv: 2407.20892, 2024.
|
[11] |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 7464-7475.
|
[12] |
YASEEN M. What is YOLOv8: An in-depth exploration of the internal features of the next-generation object detector[EB/OL]. arXiv: 2408.15857, 2024.
|
[13] |
Satokawa K, Uwate Y, Nishio Y. Classification of shiitake mushrooms by using convolutional neural networks with edge detection images[C]// IEEE Workshop on Nonlinear Circuit Networks. Piscataway, New Jersey, USA: IEEE, 2021: 52–55.
|
[14] |
YE D P, JING J, ZHANG Z D, et al. MSH-YOLOv8: Mushroom small object detection method with scale reconstruction and fusion[J]. Smart agriculture, 2024, 6(5).
|
[15] |
LIU Q, FANG M, LI Y S, et al. Deep learning based research on quality classification of shiitake mushrooms[J]. LWT, 2022, 168: ID 113902.
|
[16] |
DENG J W, LIU Y H, XIAO X Q. Deep-learning-based wireless visual sensor system for shiitake mushroom sorting[J]. Sensors, 2022, 22(12): ID 4606.
|
[17] |
AMIRUDDIN K, ABDUL KAHAR N H, AHMAD I, et al. Automated mushroom classification system using machine learning[J]. Journal of advanced research in applied sciences and engineering technology, 2024: 129-140.
|
[18] |
WANG J L, SONG W D, ZHENG W G, et al. Spatial-channel transformer network based on mask-RCNN for efficient mushroom instance segmentation[J]. International journal of agricultural and biological engineering, 2024, 17(4): 227-235.
|
[19] |
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need[C]// Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017). NY, USA: Curran Associates, Inc., 2017: 6000–6010.
|
[20] |
TURNER R E. An introduction to transformers[EB/OL]. arXiv:2304.10557, 2023.
|
[21] |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]// Computer Vision – ECCV 2020. Cham: Springer International Publishing, 2020: 213-229.
|
[22] |
ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2024: 16965-16974.
|
[23] |
胡继文, 张国梁, 沈明哲, 等. 面向松木表面缺陷检测的改进RT-DETR模型[J]. 农业工程学报, 2024, 40(7): 210-218.
|
|
HU J W, ZHANG G L, SHEN M Z, et al. Detecting surface defects of pine wood using an improved RT-DETR model[J]. Transactions of the Chinese society of agricultural engineering, 2024, 40(7): 210-218.
|
[24] |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: Chasing higher FLOPS for faster neural networks[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 12021-12031.
|
[25] |
SUNKARA R, LUO T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects[M]// Machine Learning and Knowledge Discovery in Databases. Cham: Springer Nature Switzerland, 2023: 443-459.
|
[26] |
CUI Y N, REN W Q, KNOLL A. Omni-kernel network for image restoration[J]. Proceedings of the AAAI conference on artificial intelligence, 2024, 38(2): 1426-1434.
|
[27] |
WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, New Jersey, USA: IEEE, 2020: 1571-1580.
|
[28] |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 658-666.
|
[29] |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
|