| [1] |
夏天, 武星华, 周晓, 等. "虾稻"模式下粮食安全—经济发展—生态保护三维系统综合效益: 以湖北潜江市为例[J]. 经济地理, 2024, 44(8): 170-180.
|
|
XIA T, WU X H, ZHOU X, et al. Comprehensive benefits of the three-dimensional system of food security, economic development, and ecological protection under the rice-crayfish co-cropping model: A case study of Qianjiang city in Hubei province[J]. Economic geography, 2024, 44(8): 170-180.
|
| [2] |
周国华, 龙花楼, 林万龙, 等. 新时代“三农”问题和乡村振兴的理论思考与实践发展[J]. 自然资源学报, 2023, 38(8): 1919-1940.
|
|
ZHOU G H, LONG H L, LIN W L, et al. Theoretical thinking and practical development of "Three Rural Issues" and rural revitalization in the new era[J]. Journal of natural resources, 2023, 38(8): 1919-1940.
|
| [3] |
唐健飞, 刘剑玲. 省域农业可持续发展水平评价及其耦合协调分析: 以长江经济带11省市为例[J]. 经济地理, 2022, 42(12): 179-185.
|
|
TANG J F, LIU J L. Evaluation and coupling coordination analysis of provincial agricultural sustainable development: A case of 11 provinces in the Yangtze River economic belt[J]. Economic geography, 2022, 42(12): 179-185.
|
| [4] |
王松良, 施生旭. 发展中国生态农业是实现中国式农业现代化的根本路径: 兼论生态农业在我国兴起与发展的“前世今生”[J]. 中国生态农业学报(中英文), 2023, 31(8): 1184-1193.
|
|
WANG S L, SHI S X. Developing Chinese ecological agriculture acts as a vital pathway of the statespecifically agricultural modernization in China: A historical review of ecological agriculture movement in China[J]. Chinese journal of eco-agriculture, 2023, 31(8): 1184-1193.
|
| [5] |
LAO A R, AVISO K B, CABEZAS H, et al. Maintaining the productivity of co-culture systems in the face of environmental change[J]. Nature sustainability, 2022, 5(9): 749-752.
|
| [6] |
LIU B B, GU W Y, YANG Y, et al. Promoting potato as staple food can reduce the carbon-land-water impacts of crops in China[J]. Nature food, 2021, 2(8): 570-577.
|
| [7] |
SHEN G, YU Q Y, ZHOU Q B, et al. From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity[J]. Agricultural systems, 2023, 204: ID 103535.
|
| [8] |
FAN L M, LI F J, CHEN X, et al. Co-culture of red swamp crayfish Procambarus clarkia influenced glycoside hydrolase families and fungal communities in the rice-paddy soils[J]. Applied soil ecology, 2023, 186: ID 104816.
|
| [9] |
XU Q, DAI L X, SHANG Z Y, et al. Application of controlled-release urea to maintain rice yield and mitigate greenhouse gas emissions of rice-crayfish coculture field[J]. Agriculture, ecosystems & environment, 2023, 344: ID 108312.
|
| [10] |
夏天, 吴婕妤, 朱媛媛, 等. 中国中部重点农区虾稻田的时空演变及地域模式[J]. 经济地理, 2023, 43(6): 183-191.
|
|
XIA T, WU J Y, ZHU Y Y, et al. Spatio-temporal evolution and regional development model of rice-crayfish fields in main agricultural production regions of Central China[J]. Economic geography, 2023, 43(6): 183-191.
|
| [11] |
陈松文, 曹凑贵, 郝向举, 等. 中国稻虾种养: 产业现状与绿色高质量发展对策[J]. 农业现代化研究, 2023, 44(4): 575-587.
|
|
CHEN S W, CAO C G, HAO X J, et al. Rice-crayfish farming in China: Current industry status and strategies for the further development of high-quality green farming[J]. Research of agricultural modernization, 2023, 44(4): 575-587.
|
| [12] |
XU Q, PENG X, GUO H L, et al. Rice-crayfish coculture delivers more nutrition at a lower environmental cost[J]. Sustainable production and consumption, 2022, 29: 14-24.
|
| [13] |
JIANG Y, CAO C G. Crayfish–rice integrated system of production: An agriculture success story in China. A review[J]. Agronomy for sustainable development, 2021, 41(5): ID 68.
|
| [14] |
倪明理, 邓凯, 张文宇, 等. 稻虾种养对水稻产量和粮食安全的影响[J]. 中国生态农业学报(中英文), 2022, 30(8): 1293-1300.
|
|
NI M L, DENG K, ZHANG W Y, et al. Effects of rice-crayfish coculture on rice yield and food security[J]. Chinese journal of eco-agriculture, 2022, 30(8): 1293-1300.
|
| [15] |
JIN T, GE C D, GAO H, et al. Evaluation and screening of co-culture farming models in rice field based on food productivity[J]. Sustainability, 2020, 12(6): ID 2173.
|
| [16] |
鄂海林, 周德成, 李坤. 基于Sentinel 1/2和GEE的水稻种植面积提取方法: 以杭嘉湖平原为例[J]. 智慧农业(中英文), 2025, 7(2): 81-94.
|
|
E H L, ZHOU D C, LI K. Extracting method of the cultivation aera of rice based on sentinel-1/2 and google earth engine (GEE): A case study of the hangjiahu plain[J]. Smart agriculture, 2025, 7(2): 81-94.
|
| [17] |
WANG C, WANG G H, ZHANG G L, et al. Freshwater aquaculture mapping in "home of Chinese crawfish" by using a hierarchical classification framework and sentinel-1/2 data[J]. Remote sensing, 2024, 16(5): ID 893.
|
| [18] |
魏浩东, 杨靖雅, 蔡志文, 等. 物候窗口和多源中高分辨率影像的稻虾田提取[J]. 遥感学报, 2022, 26(7): 1423-1436.
|
|
WEI H D, YANG J Y, CAI Z W, et al. Phenology windows and multi-source medium-/ high-resolution image extraction for rice-crayfish paddy fields mapping[J]. National remote sensing bulletin, 2022, 26(7): 1423-1436.
|
| [19] |
魏妍冰, 陆苗, 吴文斌. 基于水体季相差异的稻虾共作提取方法研究[J]. 中国农业资源与区划, 2019, 40(3): 14-20, 34.
|
|
WEI Y B, LU M, WU W B. Study on extraction method of rice-crayfish based on seasonal difference of water[J]. Chinese journal of agricultural resources and regional planning, 2019, 40(3): 14-20, 34.
|
| [20] |
董秀春, 蒋怡, 李宗南, 等. 基于Sentinel-1时序数据的稻虾田遥感识别[J]. 遥感技术与应用, 2024, 39(2): 306-314.
|
|
DONG X C, JIANG Y, LI Z N, et al. Remote Sensing identification of rice-crayfish fields using sentinel-1 time series[J]. Remote sensing technology and application, 2024, 39(2): 306-314.
|
| [21] |
MA S Q, WANG D Y, YANG H C, et al. A bi-temporal-feature-difference- and object-based method for mapping rice-crayfish fields in Sihong, China[J]. Remote sensing, 2023, 15(3): ID 658.
|
| [22] |
XIA T, JI W W, LI W D, et al. Phenology-based decision tree classification of rice-crayfish fields from Sentinel-2 imagery in Qianjiang, China[J]. International journal of remote sensing, 2021, 42(21): 8124-8144.
|
| [23] |
WEI H D, HU Q, CAI Z W, et al. An object- and topology-based analysis (OTBA) method for mapping rice-crayfish fields in South China[J]. Remote sensing, 2021, 13(22): ID 4666.
|
| [24] |
查鸿伟, 李浩, 朱益虎, 等. 利用边缘辅助分割网络提取稻虾共作养殖田[J]. 农业工程学报, 2023, 39(19): 154-164.
|
|
ZHA H W, LI H, ZHU Y H, et al. Extraction of rice and shrimp co-cultivation farming fields using edge-assisted segmentation network[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(19): 154-164.
|
| [25] |
刘巍, 吴志峰, 骆剑承, 等. 深度学习支持下的丘陵山区耕地高分辨率遥感信息分区分层提取方法[J]. 测绘学报, 2021, 50(1): 105-116.
|
|
LIU W, WU Z F, LUO J C, et al. A divided and stratified extraction method of high-resolution remote sensing information for cropland in hilly and mountainous areas based on deep learning[J]. Acta geodaetica et cartographica sinica, 2021, 50(1): 105-116.
|
| [26] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. Cham, Germany: Springer, 2015: 234-241.
|
| [27] |
SEYDI S T, AMANI M, GHORBANIAN A. A dual attention convolutional neural network for crop classification using time-series sentinel-2 imagery[J]. Remote sensing, 2022, 14(3): ID 498.
|
| [28] |
严从宽, 朱德泉, 孟凡凯, 等. 基于改进CycleGAN的水稻叶片病害图像增强方法[J]. 智慧农业(中英文), 2024, 6(6): 96-108.
|
|
YAN C K, ZHU D Q, MENG F K, et al. Rice leaf disease image enhancement based on improved CycleGAN[J]. Smart agriculture, 2024, 6(6): 96-108.
|
| [29] |
WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 7794-7803.
|
| [30] |
KANG J, FERNANDEZ-BELTRAN R, HONG D F, et al. Graph relation network: Modeling relations between scenes for multilabel remote-sensing image classification and retrieval[J]. IEEE transactions on geoscience and remote sensing, 2021, 59(5): 4355-4369.
|
| [31] |
HUANG Z Q, YOU H J. MFSFNet: Multi-scale feature subtraction fusion network for remote sensing image change detection[J]. Remote sensing, 2023, 15(15): ID 3740.
|
| [32] |
LI X H, HE M Z, LI H F, et al. A combined loss-based multiscale fully convolutional network for high-resolution remote sensing image change detection[J]. IEEE geoscience and remote sensing letters, 2022, 19: ID 8017505.
|
| [33] |
PENG M, LIU Y X, KHAN A, et al. Crop monitoring using remote sensing land use and land change data: Comparative analysis of deep learning methods using pre-trained CNN models[J]. Big data research, 2024, 36: ID 100448.
|
| [34] |
SHAO Q H, LI R D, QIU J, et al. Large-scale mapping of new mixed rice cropping patterns in Southern China with phenology-based algorithm and MODIS dataset[J]. Paddy and water environment, 2023, 21(2): 243-261.
|