Welcome to Smart Agriculture 中文

Archive By Volume

    Smart Agriculture 2024 Vol.6
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Agricultural Sensor: Research Progress, Challenges and Perspectives
    WANG Rujing
    Smart Agriculture    2024, 6 (1): 1-17.   DOI: 10.12133/j.smartag.SA202401017
    Abstract1832)   HTML414)    PDF(pc) (1179KB)(10704)       Save

    Significance Agricultural sensor is the key technology for developing modern agriculture. Agricultural sensor is a kind of detection device that can sense and convert physical signal, which is related to the agricultural environment, plants and animals, into an electrical signal. Agricultural sensors could be applied to monitor crops and livestock in different agricultural environments, including weather, water, atmosphere and soil. It is also an important driving force to promote the iterative upgrading of agricultural technology and change agricultural production methods. Progress The different agricultural sensors are categorized, the cutting-edge research trends of agricultural sensors are analyzed, and summarizes the current research status of agricultural sensors are summarized in different application scenarios. Moreover, a deep analysis and discussion of four major categories is conducted, which include agricultural environment sensors, animal and plant life information sensors, agricultural product quality and safety sensors, and agricultural machinery sensors. The process of research, development, the universality and limitations of the application of the four types of agricultural sensors are summarized. Agricultural environment sensors are mainly used for real-time monitoring of key parameters in agricultural production environments, such as the quality of water, gas, and soil. The soil sensors provide data support for precision irrigation, rational fertilization, and soil management by monitoring indicators such as soil humidity, pH, temperature, nutrients, microorganisms, pests and diseases, heavy metals and agricultural pollution, etc. Monitoring of dissolved oxygen, pH, nitrate content, and organophosphorus pesticides in irrigation and aquaculture water through water sensors ensures the rational use of water resources and water quality safety. The gas sensor monitors the atmospheric CO2, NH3, C2H2, CH4 concentration, and other information, which provides the appropriate environmental conditions for the growth of crops in greenhouses. The animal life information sensor can obtain the animal's growth, movement, physiological and biochemical status, which include movement trajectory, food intake, heart rate, body temperature, blood pressure, blood glucose, etc. The plant life information sensors monitor the plant's health and growth, such as volatile organic compounds of the leaves, surface temperature and humidity, phytohormones, and other parameters. Especially, the flexible wearable plant sensors provide a new way to measure plant physiological characteristics accurately and monitor the water status and physiological activities of plants non-destructively and continuously. These sensors are mainly used to detect various indicators in agricultural products, such as temperature and humidity, freshness, nutrients, and potentially hazardous substances (e.g., bacteria, pesticide residues, heavy metals, etc. Agricultural machinery sensors can achieve real-time monitoring and controlling of agricultural machinery to achieve real-time cultivation, planting, management, and harvesting, automated operation of agricultural machinery, and accurate application of pesticide, fertilizer. [Conclusions and Prospects In the challenges and prospects of agricultural sensors, the core bottlenecks of large-scale application of agricultural sensors at the present stage are analyzed in detail. These include low-cost, specialization, high stability, and adaptive intelligence of agricultural sensors. Furthermore, the concept of "ubiquitous sensing in agriculture" is proposed, which provides ideas and references for the research and development of agricultural sensor technology.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Contactless Conductivity Microfluidic Chip for Rapid Determination of Soil Nitrogen and Potassium Content
    HONG Yan, WANG Le, WANG Rujing, SU Jingming, LI Hao, ZHANG Jiabao, GUO Hongyan, CHEN Xiangyu
    Smart Agriculture    2024, 6 (1): 18-27.   DOI: 10.12133/j.smartag.SA202309022
    Abstract503)   HTML55)    PDF(pc) (1344KB)(573)       Save

    Objective The content of nitrogen (N) and potassium (K) in the soil directly affects crop yield, making it a crucial indicator in agricultural production processes. Insufficient levels of the two nutrients can impede crop growth and reduce yield, while excessive levels can result in environmental pollution. Rapidly quantifying the N and K content in soil is of great importance for agricultural production and environmental protection. Methods A rapid and quantitative method was proposed for detecting N and K nutrient ions in soil based on polydimethylsiloxane (PDMS) microfluidic chip electrophoresis and capacitively coupled contactless conductivity detection (C4D). Microfluidic chip electrophoresis enables rapid separation of multiple ions in soil. The electrophoresis microfluidic chips have a cross-shaped channel layout and were fabricated using soft lithography technology. The sample was introduced into the microfluidic chip by applying the appropriate injection voltage at both ends of the injection channel. This simple and efficient procedure ensured an accurate sample introduction. Subsequently, an electrophoretic voltage was applied at both ends of the separation channel, creating a capillary zone electrophoresis that enables the rapid separation of different ions. This process offered high separation efficiency, required a short processing time, and had a small sample volume requirement. This enabled the rapid processing and analysis of many samples. C4D enabled precise measurement of changes in conductivity. The sensing electrodes were separated from the microfluidic chips and printed onto a printed circuit board (PCB) using an immersion gold process. The ions separated under the action of an electric field and sequentially reach the sensing electrodes. The detection circuit, connected to the sensing electrodes, received and regulated the conductivity signal to reflect the variance in conductivity between the sample and the buffer solution. The sensing electrodes were isolated from the sample solution to prevent interference from the high-voltage electric field used for electrophoresis. Results and Discussions The voltage used for electrophoresis, as well as the operating frequency and excitation voltage of the excitation signal in the detection system, had a significant effect on separation and detection performance. Based on the response characteristics of the system output, the optimal operating frequency of 1 000 kHz, excitation voltage of 50 V, and electrophoresis voltage of 1.5 kV were determined. A peak overshoot was observed in the electrophoresis spectrum, which was associated with the operating frequency of the system. The total noise level of the system was approximately 0.091 mV. The detection limit (S/N = 3) for soil nutrient ions was determined by analyzing a series of standard sample solutions with varying concentrations. The detection limited for potassium (K+), ammonium (NH4+), and nitrate (NO3) standard solutions were 0.5, 0.1 and 0.4 mg/L, respectively. For the quantitative determination of soil nutrient ion concentration, the linear relationship between peak area and corresponding concentration was investigated under optimal experimental conditions. K+, NH4+, and NO3 exhibit a strong linear relationship in the range of 0.5~40 mg/L, with linear correlation coefficients (R2) of 0.994, 0.997, and 0.990, respectively, indicating that this method could accurately quantify N and K ions in soil. At the same time, to evaluate the repeatability of the system, peak height, peak area, and peak time were used as evaluation indicators in repeatability experiments. The relative standard deviation (RSD) was less than 4.4%, indicating that the method shows good repeatability. In addition, to assess the ability of the C4D microfluidic system to detect actual soil samples, four collected soil samples were tested using MES/His and PVP/PTAE as running buffers. K+, NH4+,Na+, Chloride (Cl), NO3, and sulfate (SO43‒) were separated sequentially within 1 min. The detection efficiency was significantly improved. To evaluate the accuracy of this method, spiked recovery experiments were performed on four soil samples. The recovery rates ranged from 81.74% to 127.76%, indicating the good accuracy of the method. Conclusions This study provides a simple and effective method for the rapid detection of N and K nutrient ions in soil. The method is highly accurate and reliable, and it can quickly and efficiently detect the contents of N and K nutrient ions in soil. This contactless measurement method reduced costs and improved economic efficiency while extending the service life of the sensing electrodes and reducing the frequency of maintenance and replacement. It provided strong support for long-term, continuous conductivity monitoring.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Capacitive Soil Moisture Sensor Based on MoS2
    LI Lu, GE Yuqing, ZHAO Jianlong
    Smart Agriculture    2024, 6 (1): 28-35.   DOI: 10.12133/j.smartag.SA202309020
    Abstract414)   HTML37)    PDF(pc) (1373KB)(985)       Save

    Objective The soil moisture content is a crucial factor that directly affected the growth and yield of crops. By using a soil measurement instrument to measure the soil's moisture content, lots of powerful data support for the development of agriculture can be provided. Furthermore, these data have guiding significance for the implementation of scientific irrigation and water-saving irrigation in farmland. In order to develop a reliable and efficient soil moisture sensor, a new capacitive soil moisture sensor based on microfabrication technology was proposed in this study. Capacitive moisture sensors have the advantages of low power consumption, good performance, long-term stability, and easy industrialization. Method The forked electrode array consists of multiple capacitors connected in parallel on the same plane. The ideal design parameters of 10 μm spacing and 75 pairs of forked electrodes were obtained by calculating the design of forked finger logarithms, forked finger spacing, forked finger width, forked finger length, and electrode thickness, and studying the influence of electrode parameters on capacitance sensitivity using COMSOL Multiphysics software. The size obtained an initial capacitance on the order of picofarads, and was not easily breakdown or failed. The sensor was constructed using microelectromechanical systems (MEMS) technology, where a 30 nm titanium adhesion layer was sputtered onto a glass substrate, followed by sputtering a 100 nm gold electrode to form a symmetrical structure of forked electrodes. Due to the strong adsorption capacity of water molecules of the MoS2 (molybdenum disulfide) layer, it exhibited high sensitivity to soil moisture and demonstrated excellent soil moisture sensing performance. The molybdenum disulfide was coated onto the completed electrodes as the humidity-sensitive material to create a humidity sensing layer. When the humidity changed, the dielectric constant of the electrode varied due to the moisture-absorbing characteristics of molybdenum disulfide, and the capacitance value of the device changed accordingly, thus enabling the measurement of soil moisture. Subsequently, the electrode was encapsulated with a polytetrafluoroethylene (PTFE) polymer film. The electrode encapsulated with the microporous film could be directly placed in the soil, which avoided direct contact between the soil/sand particles and the molybdenum disulfide on the device and allowed the humidity sensing unit to only capture the moisture in the soil for measuring humidity. This ensured the device's sensitivity to water moisture and improved its long-term stability. The method greatly reduced the size of the sensor, making it an ideal choice for on-site dynamic monitoring of soil moisture. Results and Discussions The surface morphology of molybdenum disulfide was characterized and analyzed using a Scanning Electron Microscope (SEM). It was observed that molybdenum disulfide nanomaterial exhibited a sheet-like two-dimensional structure, with smooth surfaces on the nanosheets. Some nanosheets displayed sharp edges or irregular shapes along the edges, and they were irregularly arranged with numerous gaps in between. The capacitive soil moisture sensor, which utilized molybdenum disulfide as the humidity-sensitive layer, exhibited excellent performance under varying levels of environmental humidity and soil moisture. At room temperature, a humidity generator was constructed using saturated salt solutions. Saturated solutions of lithium chloride, potassium acetate, magnesium chloride, copper chloride, sodium chloride, potassium chloride, and potassium sulfate were used to generate relative humidity levels of 11%, 23%, 33%, 66%, 75%, 84%, and 96%, respectively. The capacitance values of the sensor were measured at different humidity levels using an LCR meter (Agilent E4980A). The capacitance output of the sensor at a frequency of 200 Hz ranged from 12.13 pF to 187.42 nF as the relative humidity varied between 11% to 96%. The sensor exhibited high sensitivity and a wide humidity sensing range. Additionally, the frequency of the input voltage signal had a significant impact on the capacitance output of the sensor. As the testing frequency increased, the response of the sensor's system decreased. The humidity sensing performance of the sensor was tested in soil samples with moisture content of 8.66%, 13.91%, 22.02%, 31.11%, and 42.75%, respectively. As the moisture content in the soil increased from 8.66% to 42.75%, the capacitance output of the sensor at a frequency of 200 Hz increased from 119.51 nF to 377.98 nF, demonstrating a relatively high sensitivity. Similarly, as the frequency of the input voltage increased, the capacitance output of the sensor decreased. Additionally, the electrode exhibited good repeatability and the sensitivity of the sensor increased significantly as the testing frequency decreased. Conclusions The capacitive soil moisture sensor holds promise for effective and accurate monitoring of soil moisture levels, with its excellent performance, sensitivity, repeatability, and responsiveness to changes in humidity and soil moisture. The ultimate goal of this study is to achieve long-term monitoring of capacitance changes in capacitive soil moisture sensors, enabling monitoring of long-term changes in soil moisture. This will enable farmers to optimize irrigation systems, improve crop yields, and reduce water usage. In conclusion, the development of this innovative soil moisture sensor has the potential to promote agricultural modernization by providing accurate and reliable monitoring of soil moisture levels.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Automatic Identification Method for Spectral Peaks of Soil Nutrient Ions Using Contactless Conductivity Detection
    TANG Chaoli, LI Hao, WANG Rujing, WANG Le, HUANG Qing, WANG Dapeng, ZHANG Jiabao, CHEN Xiangyu
    Smart Agriculture    2024, 6 (1): 36-45.   DOI: 10.12133/j.smartag.SA202309028
    Abstract356)   HTML12)    PDF(pc) (2822KB)(325)       Save

    Objective Capacitive coupled contactless conductivity detection (C4D) plays an important role in agricultural soil nutrient ion detection. Effective identification of characteristic ion peaks in C4D signals is conducive to subsequent qualitative and quantitative analysis of characteristic ion peaks, which provides a basis for improving agricultural soil nutrient management. However, the detection of characteristic peaks in C4D signals still has shortcomings, such as the inability of automatic and accurate identification, complicated manual operation, and low efficiency. Methods In this study, an automatic spectral peak identification algorithm based on continuous wavelet transform combined with particle swarm optimization (PSO) and maximum interclass variance method (Otsu) was proposed to achieve accurate, efficient and automated identification of C4D signal peaks. Capillary electrophoresis (CE) combined with a C4D device (CE-C4D) was used to detect the standard ions and soil sample solutions to obtain the C4D ion signal spectra, which were simulated according to the characteristics of the real C4D signal spectra to obtain the C4D simulated signals containing single Gaussian peaks and multi-Gaussian peaks. The continuous wavelet transform was performed on the C4D spectrogram signal to obtain the wavelet transform coefficient matrix. The local maxima and local minima of the continuous wavelet transform coefficient matrix were searched by the staircase scanning method, and the local maxima and local minima were connected to form ridges and valleys. The wavelet coefficient matrix was converted to a gray-scale image by logistic mapping to visualize the data. The number of particle populations in PSO was set to 15, the gray scale threshold of 15 particles was set to a random integer within the gray scale level of 0~255, and the initial velocity of the particles was set to 5. The combination of PSO and Otsu calculated the fitness (variance value) of each particle, updated the individual best position and the global best position, further updated the velocities and positions of the particles to find the global best position (the maximum interclass variance), and defined the maximum interclass variance was defined as the optimal threshold value, used the optimal threshold value for background and target segmentation of the gray-scale image and extracted the ridges within the peak region segmented from the gray-scale image by the PSO-Otsu algorithm. A threshold was set according to the length of the ridge line; the ridge lines larger than the threshold were extracted; the valley lines on both sides of the ridge line were found according to the filtered ridge line; and the start and end points of the peak region were obtained from the valley lines. The filtered ridge lines were used to identify the peak location of the peak region, and the edge threshold was set to remove the false peaks due to continuous wavelet transform (CWT) located in the edge region of the C4D signal and to accurately identify the location of the true peak value. Results and Discussions The datasets containing 41, 61 and 102 peaks were tested, and the Receiver Operating Characteristic (ROC) curves and metric values were used as a guideline to evaluate the performance of the peak detection algorithms. Compared to the two methods, multi scale peak detection (MSPD) and CWT-based image segmentation (CWT-IS), the CWT combined with Particle Swarm Optimization based maximum spectral peaks automatic identification algorithm based on Continuous Wavelet Transform combined with Particle Swarm Optimization of Otsu to segment image (CWTSPSO) method of interclass variance segmentation (CWT-IS), the ROC curves of the three groups remained above 0.9. Testing the dataset containing 102 peaks, the ROC curves of MSPD and CWT-IS were also high only in the case of high false discovery rate. The highest metric values of CWTSPSO were 0.976, 0.915, and 0.969, respectively, and the highest metric values of 1 set of MSPD and CWT-IS were 0.754 and 0.505. The results showed that the ROC curves of CWTSPSO in the 3 sets of dataset were not high. Using ROC curves and metric values as a criterion comparison to evaluate the performance of peak detection algorithms, the characteristic peak recognition performance was outstanding, which could achieve a higher correct rate while maintaining a lower false discovery rate, effectively detected more weak and overlapping peaks while detecting fewer false peaks, which was conducive to the enhancement of the spectral peak recognition rate and accuracy of the C4D signals. Conclusions This study provided a fast and accurate method for the identification of characteristic peaks in the spectrograms of ion signals detected by contactless conductivity, CWTSPSO could accurately identify the weak and overlapping peaks in the spectrograms of ion signals detected by contactless conductivity. The automatic identification algorithm of the spectrogram peaks of CWTSPSO would provide powerful support for the characterization and quantification of the signals of nutrient ions detected by contactless conductivity in agricultural soils and would further strengthen the precision of soil fertilization and crop growth management fertilization and crop growth management.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Research Progresses of Crop Growth Monitoring Based on Synthetic Aperture Radar Data
    HONG Yujiao, ZHANG Shuo, LI Li
    Smart Agriculture    2024, 6 (1): 46-62.   DOI: 10.12133/j.smartag.SA202308019
    Abstract474)   HTML72)    PDF(pc) (1147KB)(798)       Save

    Significance Crop production is related to national food security, economic development and social stability, so timely information on the growth of major crops is of great significance for strengthening the crop production management and ensuring food security. The traditional crop growth monitoring mainly judges the growth of crops by manually observing the shape, color and other appearance characteristics of crops through the external industry, which has better reliability and authenticity, but it will consume a lot of manpower, is inefficient and difficult to carry out monitoring of a large area. With the development of space technology, satellite remote sensing technology provides an opportunity for large area crop growth monitoring. However, the acquisition of optical remote sensing data is often limited by the weather during the peak crop growth season when rain and heat coincide. Synthetic aperture radar (SAR) compensates well for the shortcomings of optical remote sensing, and has a wide demand and great potential for application in crop growth monitoring. However, the current research on crop growth monitoring using SAR data is still relatively small and lacks systematic sorting and summarization. In this paper, the research progress of SAR inversion of crop growth parameters were summarized through comprehensive analysis of existing literature, clarify the main technical methods and application of SAR monitoring of crop growth, and explore the existing problems and look forward to its future research direction. Progress] The current research status of SAR crop growth monitoring were reviewed, the application of SAR technology had gone through several development stages: from the early single-polarization, single-band stage, gradually evolving to the mid-term multi-polarization, multi-band stage, and then to the stage of joint application of tight polarization and optical remote sensing. Then, the research progress and milestone achievements of crop growth monitoring based on SAR data were summarized in three aspects, namely, crop growth SAR remote sensing monitoring indexes, crop growth SAR remote sensing monitoring data and crop growth SAR remote sensing monitoring methods. First, the key parameters of crop growth were summarized, and the crop growth monitoring indexes were divided into morphological indicators, physiological and biochemical indicators, yield indicators and stress indicators. Secondly, the core principle of SAR monitoring of crop growth parameters was introduced, which was based on the interaction between SAR signals and vegetation, and then the specific scattering model and inversion algorithm were used to estimate the crop growth parameters. Then, a detailed summary and analysis of the radar indicators mainly applied to crop growth monitoring were also presented. Finally, SAR remote sensing methods for crop growth monitoring, including mechanistic modeling, empirical modeling, semi-empirical modeling, direct monitoring, and assimilation monitoring of crop growth models, were described, and their applicability and applications in growth monitoring were analyzed. Conclusions and Prospects Four challenges exist in SAR crop growth monitoring are proposed: 1) Compared with the methods of crop growth monitoring using optical remote sensing data, the methods of crop growth monitoring using SAR data are obviously relatively small. The reason may be that SAR remote sensing itself has some inherent shortcomings; 2) Insufficient mining of microwave scattering characteristics, at present, a large number of studies have applied the backward scattering intensity and polarization characteristics to crop growth monitoring, but few have applied the phase information to crop growth monitoring, especially the application study of polarization decomposition parameters to growth monitoring. The research on the application of polarization decomposition parameter to crop growth monitoring is still to be deepened; 3) Compared with the optical vegetation index, the radar vegetation index applied to crop growth monitoring is relatively less; 4 ) Crop growth monitoring based on SAR scattered intensity is mainly based on an empirical model, which is difficult to be extended to different regions and types of crops, and the existence of this limitation prevents the SAR scattering intensity-based technology from effectively realizing its potential in crop growth monitoring. Finally, future research should focus on mining microwave scattering features, utilizing SAR polarization decomposition parameters, developing and optimizing radar vegetation indices, and deepening scattering models for crop growth monitoring.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Imaging System for Plant Photosynthetic Phenotypes Incorporating Three-dimensional Structured Light and Chlorophyll Fluorescence
    SHU Hongwei, WANG Yuwei, RAO Yuan, ZHU Haojie, HOU Wenhui, WANG Tan
    Smart Agriculture    2024, 6 (1): 63-75.   DOI: 10.12133/j.smartag.SA202311018
    Abstract401)   HTML37)    PDF(pc) (1819KB)(1026)       Save

    Objective The investigation of plant photosynthetic phenotypes is essential for unlocking insights into plant physiological characteristics and dissecting morphological traits. However, traditional two-dimensional chlorophyll fluorescence imaging methods struggle to capture the complex three-dimensional spatial variations inherent in plant photosynthetic processes. To boost the efficacy of plant phenotyping and meet the increasingly demand for high-throughput analysis of photosynthetic phenotypes, the development and validation of a novel plant photosynthetic phenotype imaging system was explored, which uniquely combines three-dimensional structured light techniques with chlorophyll fluorescence technology. Methods The plant photosynthetic phenotype imaging system was composed of three primary parts: A tailored light source and projector, a camera, and a motorized filter wheel fitted with filters of various bandwidths, in addition to a terminal unit equipped with a development board and a touchscreen interface. The system was based on the principles and unique characteristics of chlorophyll fluorescence and structured light phase-shifted streak 3D reconstruction techniques. It utilized the custom-designed light source and projector, together with the camera's capability to choose specific wavelength bands, to its full potential. The system employed low-intensity white light within the 400–700 nm spectrum to elicit stable fluorescence, with blue light in the 440–450 nm range optimally triggering the fluorescence response. A projector was used to project dual-frequency, twelve-step phase-shifted stripes onto the plant, enabling the capture of both planar and stripe images, which were essential for the reconstruction of the plant's three-dimensional structure. An motorized filter wheel containing filters for red, green, blue, and near-infrared light, augmented by a filter less wheel for camera collaboration, facilitated the collection of images of plants at different wavelengths under varying lighting conditions. When illuminated with white light, filters corresponding to the red, green, and blue bands were applied to capture multiband images, resulting in color photographs that provides a comprehensive documentation of the plant's visual features. Upon exposure to blue light, the near-infrared filter was employed to capture near-infrared images, yielding data on chlorophyll fluorescence intensity. During the structured light streak projection, no filter was applied to obtain both planar and streak images of the plant, which were then employed in the 3D morphological reconstruction of the plant. The terminal, incorporating a development board and a touch screen, served as the control hub for the data acquisition and subsequent image processing within the plant photosynthetic phenotypic imaging system. It enabled the switching of light sources and the selection of camera bands through a combination of command and serial port control circuits. Following image acquisition, the data were transmitted back to the development board for analysis, processing, storage, and presentation. To validate the accuracy of 3D reconstruction and the reliability of photosynthetic efficiency assessments by the system, a prototype of the plant photosynthetic phenotypic imaging system was developed using 3D structured light and chlorophyll fluorescence technology, in accordance with the aforementioned methods, serving as an experimental validation platform. The accuracy of 3D reconstruction and the effectiveness of photosynthetic analysis capabilities of this imaging system were further confirmed through the analysis and processing of the experimental results, with comparative evaluations conducted against conventional 3D reconstruction methods and traditional chlorophyll fluorescence-based photosynthetic efficiency analyses. Results and Discussions The imaging system utilized for plant photosynthetic phenotypes incorporates a dual-frequency phase-shift algorithm to facilitate the reconstruction of three-dimensional (3D) plant phenotypes. Simultaneously, plant chlorophyll fluorescence images were employed to evaluate the plant's photosynthetic efficiency. This method enabled the analysis of the distribution of photosynthetic efficiency within a 3D space, offering a significant advancement over traditional plant photosynthetic imaging techniques. The 3D phenotype reconstructed using this method exhibits high precision, with an overall reconstruction accuracy of 96.69%. The total error was merely 3.31%, and the time required for 3D reconstruction was only 1.11 s. A comprehensive comparison of the 3D reconstruction approach presented with conventional methods had validated the accuracy of this technique, laying a robust foundation for the precise estimation of a plant's 3D photosynthetic efficiency. In the realm of photosynthetic efficiency analysis, the correlation coefficient between the photosynthetic efficiency values inferred from the chlorophyll fluorescence image analysis and those determined by conventional analysis exceeded 0.9. The experimental findings suggest a significant correlation between the photosynthetic efficiency values obtained using the proposed method and those from traditional methods, which could be characterized by a linear relationship, thereby providing a basis for more precise predictions of plant photosynthetic efficiency. Conclusions The method melds the 3D phenotype of plants with an analysis of photosynthetic efficiency, allowing for a more holistic assessment of the spatial heterogeneity in photosynthetic efficiency among plants by examining the pseudo-color images of chlorophyll fluorescence's spatial distribution. This approach elucidates the discrepancies in photosynthetic efficiency across various regions. The plant photosynthetic phenotype imaging system affords an intuitive and comprehensive view of the photosynthetic efficiency in plants under diverse stress conditions. Additionally, It provides technical support for the analysis of the spatial heterogeneity of high-throughput photosynthetic efficiency in plants.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Electrochemical Immunosensor for in Situ Detection of Brassinolide
    WEI Qian, GAO Yuanyuan, LI Aixue
    Smart Agriculture    2024, 6 (1): 76-88.   DOI: 10.12133/j.smartag.SA202311001
    Abstract313)   HTML16)    PDF(pc) (1903KB)(553)       Save

    Objective Brassinolide is an important endogenous plant hormone. In this work, an electrochemical immunosensor for in situ detection of brassinolide was constructed using screen-printed electrode (SPE). Methods Au nanoparticles (AuNPs) were firstly electrodeposited on the surface of SPE electrode by electrochemical workstation, and then CuCl2 nanowires (CuCl2 NWs) were added to the electrode, which can not only increase the conductivity of the electrode, but also Cu2+ can be used as a REDOX probe for the sensor. Finally, Mxene and polydopamine nanocomposite (Mxene@PDA) were selected as the modification materials for SPE electrodes because Mxene has the advantages of large surface area and good electrical conductivity, which can further amplify Cu2+ signals. However, Mxene is easily oxidized and unstable in air. Polydopamine (PDA) contains a large number of catechol and amino groups, which are coated on the surface of Mxene after self-polymerization by dopamine, cutting off the path of oxygen penetration, making Mxene difficult to be oxidized. Mxene@PDA can also be used as a coupling agent to fix more antibodies on the electrode surface, improving the overall biocompatibility, and improve the overall biocompatibility. Results and Discussions The sensor has a wide linear detection range: 0.1 pg/mL to 1 mg/mL, and the detection limit was 0.015 pg/ml (S/N=3). In addition, the content of endogenous brassinolide in wheat was detected by SPE electrodes in vitro and the recovery rate was 98.13% to 104.74%.While verifying the accuracy of the sensor, it also demonstrated its superior stability and sensitivity. Besides, the sensor also showed excellent application potential in the in situ detection of brassinosteroids from wheat leaves. Compared with other brassinolide detection methods, the immunosensor developed in this study has better analytical performance. Conclusions An electrochemical immunosensor for in situ detection of brassinolide was developed for the first time, providing a good electrochemical platform for in situ determination of brassinolide in plant leaves, which has great application potential in precision agriculture.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Using a Portable Visible-near Infrared Spectrometer and Machine Learning to Distinguish and Quantify Mold Contamination in Wheat
    JIA Wenshen, LYU Haolin, ZHANG Shang, QIN Yingdong, ZHOU Wei
    Smart Agriculture    2024, 6 (1): 89-100.   DOI: 10.12133/j.smartag.SA202311032
    Abstract332)   HTML17)    PDF(pc) (2050KB)(951)       Save

    Objective Traditional methods for detecting mold are time-consuming, labor-intensive, and vulnerable to environmental influences, highlighting the need for a swift, precise, and dependable detection approach. Researchers have utilized visible-near infrared (NIR) spectroscopy for the non-destructive, rapid assessment of wheat moisture content, crude protein content, concealed pests, starch content, dry matter, weight, hardness, origin, and other attributes. However, most of these studies rely on research-grade Visible-NIR spectrometers typically found in laboratories. While these spectrometers offer superior detection accuracy and stability, their bulky size, lack of portability, and high cost hinder their widespread use and adoption across various agricultural product distribution channels. Methods A low-resolution Visible-NIR spectrometer (VNIAPD, with a resolution of 1.6 nm) was utilized to gather wheat data. The aim was to enhance the accuracy of moldy wheat detection by identifying suitable spectral data preprocessing methods using corresponding algorithms. A high-resolution Visible-NIR spectrometer (SINO2040, with a resolution of 0.19 nm) served as a control to validate the instrument and method's effectiveness. The Zhoumai (No. 22) wheat variety was adopted, with a total of 100 samples prepared. The spectra of fresh wheat were scanned and then placed in a constant temperature chamber at 35 °C to replicate the appropriate conditions for mold growth, thereby accelerating the reproduction of naturally occurring mold in the wheat. The degree of mold was categorized based on the cultivation time in the constant temperature chamber, with wheat classified as mildly, moderately, or severely moldy after 3, 6, and 9 days of cultivation, respectively. A total of 400 wheat spectral data points were collected, including 100 samples each of fresh wheat, wheat cultured for 3 days, wheat cultured for 6 days, and wheat cultured for 9 days. Preprocessing methods such as standard deviation normalization (SDN), standard normal variation (SNV), mean centrality (MC), first-order derivatives (1ST), Savitzky-Golay smoothing (SG), and multiple scattering correction (MSC) were applied to the spectral data. Outliers were identified and eliminated using the local outlier factor (LOF) method. Following this, the sequential projection algorithm (SPA) and Least absolute shrinkage and selection operator (LASSO) were used to extract characteristic wavelengths from the preprocessed spectra. Subsequently, six algorithms, including k-nearest neighbors (KNN), support vector machines (SVM), random forests (RF), Naïve-Bayes, back propagation neural networks (BPNN), and deep neural networks (DNN), were employed to model and analyze the feature wavelength spectra, differentiating moldy wheat and classifying the degree of mold. Evaluation criteria encompassed accuracy, modeling time, and model size to aid in selecting the most suitable model for specific application scenarios. Results and discussions Regarding accuracy, even when utilizing the computationally slower and more memory-demanding neural network models BPNN and DNN, both the VNIAPD and SINO2040 achieved a perfect 100% accuracy in the binary classification task of distinguishing between fresh and moldy wheat. They also maintained a faultless 100% accuracy in the ternary classification task that differentiates three varying levels of mold growth. Adopting faster and more memory-efficient shallow models such as KNN, SVM, RF, and Naïve-Bayes, the VNIAPD yielded a top test set accuracy of 97.72% when combined with RF for binary classification. Conversely, SINO2040 achieved 100% accuracy using Naïve-Bayes. In the ternary classification scenario, the VNIAPD hit the mark at 100% accuracy with both KNN and RF, while SINO2040 demonstrated 97.72% accuracy with KNN and SVM. Regarding modeling speed, the shallow machine learning algorithms, including KNN, SVM, RF, and Naïve-Bayes, exhibited quicker training times, with Naïve-Bayes being the swiftest at just 3 ms. In contrast, the neural network algorithms BPNN and DNN required more time for training, taking 3 293 and 18 614 ms, respectively. Regarding memory footprint, BPNN had the largest model size, occupying 4 028 kb, whereas SVM was the most memory-efficient, with a size of only 4 kb. Overall, the VNIAPD matched the SINO2040 in detection accuracy despite having lower optical parameters: A slightly lesser optical resolution of 1.6 nm compared to the SINO2040's 0.19 nm—and a lower cost, highlighting its efficiency and cost-effectiveness in the given context. Conclusions In this study, by comparing different preprocessing methods for spectral data, the optimal data optimization choices for corresponding algorithms were identified. As a result, the low-resolution spectrometer VNIAPD was able to achieve performance on par with the high-resolution spectrometer SINO2040 in detecting moldy wheat, providing a new option for low-cost, non-destructive detection of wheat mold and the degree of moldiness based on Visible-NIR spectroscopy.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    AgNPs Prepared by Lemon Juice Reduction Method for SERS Rapid Detection of Pesticide Residues in Fruits and Vegetables
    DONG Shanshan, ZHANG Fengqiu, XIA Qi, LI Jialin, LIU Chao, LIU Shaowei, CHEN Xiangyu, WANG Rujing, HUANG Qing
    Smart Agriculture    2024, 6 (1): 101-110.   DOI: 10.12133/j.smartag.SA202311010
    Abstract308)   HTML17)    PDF(pc) (2305KB)(475)       Save

    Objective The use of pesticides is one of the root causes of food safety problems. Pesticide exposure and pesticide residues can not only lead to environmental pollution issues but also seriously affect human health. In order to meet the rapid and sensitive detection needs of pesticide residues in agricultural products, a method based on lemon juice reduction to prepare silver nanoparticles (AgNPs) is reported in this research. Methods First, fresh lemon juice was filtered through filter paper and diluted to a 2% lemon juice aqueous solution. Then, a certain concentration of AgNO3 solution, 50 mm NaOH solution were prepared and stored at room temperature. Then, 10 mL ddH2O, 2 mL NaOH, 2 mL 2% lemon juice, and 5 mL AgNO3 solution were mixed. When the solution turned to a clear yellow color, the solution was centrifuged to obtain AgNPs. The morphology and structure of AgNPs were observed by transmission electron microscopy (TEM). In order to verify the successful synthesis of the nanoparticles and the distribution characteristics of the nanoparticles, ultraviolet spectroscopy was used for measurement and analysis, and 4-ATP was used as a SERS probe to preliminarily verify the SERS enhancement performance of AgNPs. Furthermore, the content of the main reducing components in lemon juice, namely ascorbic acid, glucose, and fructose was analyzed. The content of ascorbic acid in lemon juice was determined by high-performance liquid chromatography, and the content of glucose and fructose in lemon juice was determined by UV-visible spectrophotometry. To verify the stability and uniformity of the SERS signal of the nanoparticles, 4-ATP was used as an surface enhancement of raman scattering (SERS) probe for detection analysis. The stability of the SERS performance of the colloidal substrate within 41 days and the SERS performance at temperatures ranging from 0-80 °C were analyzed. Using 4-ATP as the SERS probe, the experimental conditions were optimized for the preparation of AgNPs by the lemon juice method, including pH and AgNO3 concentration. To validate the practical usability of the nanoparticles, the solutions of paraquat and carbendazim and the detection limits of pesticide residues on different fruits and vegetables were detected by SERS. Results and discussions The method for preparing AgNPs has the advantages of simple operation, green and easy synthesis. The particle morphology and size of the prepared AgNPs were basically uniform, with a size of about 20 nm. The ultraviolet-visible spectrum of AgNPs solution showed that the absorption peak was about 400 nm and the peak shape was narrow, indicating that the colloidal solution had good homogeneity. The detection limit of 4-ATP as the SERS probe was 10-14 M, indicating that the nanoparticle had a good SERS. In addition, the content of ascorbic acid, the main reducing ingredient, in lemon juice measured by high-performance liquid chromatography (HPLC) was 395.76 μg/mL. The contents of glucose and fructose, which were the main reducing components in lemon juice, were 5.95 and 5.90 mg/mL, respectively. Furthermore, the characterization and analysis results of the AgNPs prepared by the mixed reducing solution prepared according to the concentration data of each component showed that the AgNPs obtained were also uniform in morphology and size, with a diameter of about 20 nm, but the SERS enhancement performance was not as good as that of the AgNPs reduced by lemon juice. The SERS signal uniformity of the AgNPs reduced by lemon juice analyzed results showed that the peak intensity of the SERS spectral of 4-ATP at different sites at the same concentration was not significantly changed for 15 times, and its standard deviation RSD=5.03%, which was much lower than the intersubstrate RSD value (<16%) of the qualified new SERS active substrate for quantitative analysis. The temporal stability and temperature stability of AgNPs analyzed results showed that the nanoparticles still had SERS enhanced performance after 41 days of storage, and had SERS enhanced performance stability over a wide temperature range (0~80 °C). In addition, the optimization results of experimental conditions showed that the optimal pH for the preparation of AgNPs was around 7.5, and the optimal range of AgNO3 concentration used was 1.76×10-4~3.33×10-4 mol/L. Finally, using AgNPs prepared by lemon juice reduction method for pesticide residue SERS detection on the surface of fruits and vegetables, the detection limits for paraquat and carbendazim in solution were as low as 10-14 and 10-10 M, respectively, and the concentration of pesticides showed a good linear relationship with Raman spectral intensity. The lowest detection limits for paraquat and carbendazim residues on different fruits and vegetables were as low as 3.90 ng/kg and 0.22 µg/kg, respectively. Conclusions This work provides a green and convenient method for preparing SERS materials for rapid detection of pesticide residues on fruits and vegetables. This method has practical value for universal operation. The prepared AgNPs can be used for trace pesticide residue detection, providing a pathway for rapid and sensitive detection of pesticide residues in agricultural products.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Intelligent Detection and Alarm System for Ferrous Metal Foreign Objects in Silage Machines
    ZHANG Qing, LI Yang, YOU Yong, WANG Decheng, HUI Yunting
    Smart Agriculture    2024, 6 (1): 111-122.   DOI: 10.12133/j.smartag.SA202306010
    Abstract314)   HTML16)    PDF(pc) (2026KB)(575)       Save

    Objective During the operation of the silage machine, the inclusion of ferrous metal foreign objects such as stray iron wires can inflict severe damage to the machine's critical components and livestock organs. To safeguard against that, a metal detection system with superior performance was developed in this research to enable precise and efficient identification of metal foreign bodies during field operations, ensuring the integrity of the silage process and the well-being of the animals. Methods The ferrous metal detection principle of silage machine was firstly analyzed. The detection coil is the probe of the metal detection system. After being connected in parallel with a capacitor, it is connected to the detection module. The detection coil received the alternating signal generated by the detection module to generate an alternating magnetic field. After the metal object entered the magnetic field, it affects the equivalent resistance and equivalent inductance of the detection coil. The detection module detected the change of the equivalent resistance and equivalent inductance, and then transmited the signal to the control module through the serial peripheral interface (SPI). The control module filtered the signal and transmited it to the display terminal through the serial port. The display terminal could set the threshold. When the data exceeded the threshold, the system performed sound and light alarm and other processing. Hardware part of the metal detection system of silage machine were firstly design. The calculation of the planar spiral coil and the cylindrical coil was carried out and the planar spiral coil was selected as the research object. By using the nondominated sorting genetic algorithm-Ⅱ (NSGA-II) combined with the method of finite element simulation analysis, the wire diameter, inner diameter, outer diameter, layer number and frequency of the coil were determined, and the calculation of the bent coil and the unbent coil and the array coil was carried out. The hardware system was integrated. The software system for the metal detection system was also designed, utilizing an STM32 microcontroller as the control module and LabView for writing the primary program on the upper computer. The system continuously displayed the read data and time-equivalent impedance graph in real-time, allowing for the setting of upper and lower alarm thresholds. When a metal foreign object was detected, the warning light turned red and an alarm sound was emitted, causing the feed roll to stop. To simulate the scenario of metal detection during the operation of a silage machine, a test bench was set up to validate the performance of the metal detection system. Results and Discussions The test results of the metal detection function showed that for a metal wire with a diameter of 0.6 mm and a length of 20 mm, as the inner diameter of the detection coil increased, the maximum alarm distance increased first and then decreased. The maximum alarm distance occured when the inner diameter was 35 mm, which was consistent with the optimization result. The maximum alarm distance was the largest when the detection coil was two layers, and there was no data readout when it was three layers. Therefore, the optimal thickness of the detection coil for this metal detection system was two layers. When the detection distance was greater than 80 mm, the alarm rate began to decrease, and the detection effect was weakened. When the detection distance was within 70 mm, the metal detection system could achieve a 100% alarm rate. The test results of the system response time showed that the average system response time was 0.105 0 s, which was less than the safe transportation time of 0.202 0 s. The system can give an alarm before the metal foreign object reaches the cutter, so the system is safe and effective. Conclusion In this study, a metal detection system for silage machines was designed. A set of optimization methods for metal detection coils was proposed, and the corresponding metal detection software and hardware systems were developed, and the functions of the metal detection system were verified through experiments, which could provide strong technical support for the safe operation of silage machines.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Agricultural Knowledge Recommendation Model Integrating Time Perception and Context Filtering
    WANG Pengzhe, ZHU Huaji, MIAO Yisheng, LIU Chang, WU Huarui
    Smart Agriculture    2024, 6 (1): 123-134.   DOI: 10.12133/j.smartag.SA202312012
    Abstract832)   HTML33)    PDF(pc) (1503KB)(1067)       Save

    Objective Knowledge services in agricultural scenarios have the characteristics of long periodicity and prolonged activity time. Traditional recommendation models cannot effectively mine hidden information in agricultural scenarios, in order to improve the quality of agricultural knowledge recommendation services, agricultural contextual information based on agricultural time should be fully considered. To address these issues, a Time-aware and filter-enhanced sequential recommendation model for agricultural knowledge (TiFSA) was proposed, integrating temporal perception and enhanced filtering. Methods First, based on the temporal positional embedding, combining the temporal information of farmers' interactions with positional embedding based on time perception, it helped to learn project relevance based on agricultural season in agricultural contexts. A multi-head self-attention network recommendation algorithm based on time-awareness was proposed for the agricultural knowledge recommendation task, which extracted different interaction time information in the user interaction sequence and introduced it into the multi-head self-attention network to calculate the attention weight, which encoded the user's periodic interaction information based on the agricultural time, and also effectively captured the user's dynamic preference information over time. Then, through the temporal positional embedding, a filter filtering algorithm was introduced to adaptively attenuate the noise in farmers' situational data adaptively. The filtering algorithm was introduced to enhance the filtering module to effectively filter the noisy information in the agricultural dataset and alleviate the overfitting problem due to the poorly normalized and sparse agricultural dataset. By endowing the model with lower time complexity and adaptive noise attenuation capability. The applicability of this method in agricultural scenarios was improved. Next, a multi-head self attention network with temporal information was constructed to achieve unified modeling of time, projects, and features, and represent farmers' preferences of farmers over time in context, thereby providing reliable recommendation results for users. Finally, the AdamW optimizer was used to update and compute the model parameters. AdamW added L2 regularization and an appropriate penalty mechanism for larger weights, which could update all weights more smoothly and alleviate the problem of falling into local minima. Applied in the field of agricultural recommendation, it could further improve the training effect of the model. The experimental data came from user likes, comments, and corresponding time information in the "National Agricultural Knowledge Intelligent Service Cloud Platform", and the dataset ml-1m in the movie recommendation scenario was selected as an auxiliary validation of the performance of this model. Results and Discussions According to the user interaction sequence datasets in the "National Agricultural Knowledge Intelligent Service Cloud Platform", from the experimental results, it could be learned that TiFSA outperforms the other models on two different datasets, in which the enhancement was more obvious on the Agriculture dataset, where HR and NDCG were improved by 14.02% and 16.19%, respectively, compared to the suboptimal model, TiSASRec; while on the ml-1m dataset compared to the suboptimal model, SASRec, HR and NDCG were improved by 1.90% and 2.30%, respectively. In summary, the TiFSA model proposed in this paper has a large improvement compared with other models, which verifies verified the effectiveness of the TiFSA model and showed that the time interval information of farmer interaction and the filtering algorithm play an important role in the improvement of the model performance in the agricultural context. From the results of the ablation experiments, it could be seen that when the time-aware and enhanced filtering modules were removed, the values of the two metrics HR@10 and NDCG@10 were 0.293 6 and 0.203 9, respectively, and the recommended performance was poor. When only the time-aware module and only the augmentation filtering module were removed, the experimental results had different degrees of improvement compared to TiFSA-tf, and the TiFSA model proposed in this paper achieved the optimal performance in the two evaluation metrics. When only the multi-head self-attention network was utilized for recommendation, both recommendation metrics of the model were lower, indicating that the traditional sequence recommendation method that only considered the item number was not applicable to agricultural scenarios. When the augmented filtering module was introduced without the time-aware module, the model performance was improved, but still failed to achieve the ideal recommendation effect. When only the time-aware module was introduced without the augmented filtering module, there was a significant improvement in the model effect, which proved that the time-aware module was more applicable to agricultural scenarios and can effectively improve the model performance of the sequence recommendation task. When both time-aware and augmented filtering modules were introduced, the model performance was further improved, which on the one hand illustrated the dependence of the augmented filtering module on the time-aware module, and on the other hand verified the necessity of adopting the augmented filtering to the time-aware self-attention network model. Conclusions This research proposes an agricultural knowledge recommendation model that integrates time-awareness and augmented filtering, which introduces the user's interaction time interval into the embedded information, so that the model effectively learns the information of agricultural time in the agricultural scene, and the prediction of the user's interaction time and the object is more closely related to the actual scene; augmented filtering algorithms are used to attenuate the noise in the agricultural data. At the same time, the enhanced filtering algorithm is used to attenuate the noise in the agricultural data, and can be effectively integrated into the model for use, further improving the recommendation performance of the model. The experimental results show the effectiveness of the proposed TiFSA model on the agricultural dataset. The ablation experiments confirm the positive effect of time-awareness and enhanced filtering modules on the improvement of recommendation performance.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Automated Flax Seeds Testing Methods Based on Machine Vision
    MAO Yongwen, HAN Junying, LIU Chengzhong
    Smart Agriculture    2024, 6 (1): 135-146.   DOI: 10.12133/j.smartag.SA202309011
    Abstract423)   HTML55)    PDF(pc) (1671KB)(1214)       Save

    Objective Flax, characterized by its short growth cycle and strong adaptability, is one of the major cash crops in northern China. Due to its versatile uses and unique quality, it holds a significant position in China's oil and fiber crops. The quality of flax seeds directly affects the yield of the flax plant. Seed evaluation is a crucial step in the breeding process of flax. Common parameters used in the seed evaluation process of flax include circumference, area, length axis, and 1 000-seed weight. To ensure the high-quality production of flax crops, it is of great significance to understand the phenotypic characteristics of flax seeds, select different resources as parents based on breeding objectives, and adopt other methods for the breeding, cultivation, and evaluation of seed quality and traits of flax. Methods In response to the high error rates and low efficiency issues observed during the automated seed testing of flax seeds, the measurement methods were explored of flax seed contours based on machine vision research. The flax seed images were preprocessed, and the collected color images were converted to grayscale. A filtering and smoothing process was applied to obtain binary images. To address the issues of flax seed overlap and adhesion, a contour fitting image segmentation method based on fused corner features was proposed. This method incorporated adaptive threshold selection during edge detection of the image contour. Only multi-seed target areas that met certain criteria were subjected to image segmentation processing, while single-seed areas bypassed this step and were directly summarized for seed testing data. After obtaining the multi-seed adhesion target areas, the flax seeds underwent contour approximation, corner extraction, and contour fitting. Based on the provided image contour information, the image contour shape was approximated to another contour shape with fewer vertices, and the original contour curve was simplified to a more regular and compact line segment or polygon, minimizing computational complexity. All line shape characteristics in the image were marked as much as possible. Since the pixel intensity variations in different directions of image corners were significant, the second derivative matrix based on pixel grayscale values was used to detect image corners. Based on the contour approximation algorithm, contour corner detection was performed to obtain the coordinates of each corner. The resulting contour points and corners were used as outputs to further improve the accuracy and precision of subsequent contour fitting methods, resulting in a two-dimensional discrete point dataset of the image contour. Using the contour point dataset as an input, the geometric moments of the image contour were calculated, and the optimal solution for the ellipse parameters was obtained through numerical optimization based on the least squares method and the geometric features of the ellipse shape. Ultimately, the optimal contour was fitted to the given image, achieving the segmentation and counting of flax seed images. Meanwhile, each pixel in the digital image was a uniform small square in size and shape, so the circumference, area, and major and minor axes of the flax seeds could be represented by the total number of pixels occupied by the seeds in the image. The weight of a single seed could be calculated by dividing the total weight of the seeds by the total number of seeds detected by the contour, thereby obtaining the weight of the individual seed and converting it accordingly. Through the pixelization of the 1 yuan and 1 jiao coins from the fifth iteration of the 2019 Renminbi, a summary of the circumference, area, major axis, minor axis, and 1 000-seed weight of the flax seeds was achieved. Additionally, based on the aforementioned method, this study designed an automated real-time analysis system for flax seed testing data, realizing the automation of flax seed testing research. Experiments were conducted on images of flax seeds captured by an industrial camera. Results and Discussions The proposed automated seed identification method achieved an accuracy rate of 97.28% for statistically distinguishing different varieties of flax seeds. The average processing time for 100 seeds was 69.58 ms. Compared to the extreme erosion algorithm and the watershed algorithm based on distance transformation, the proposed method improved the average calculation accuracy by 19.6% over the extreme erosion algorithm and required a shorter average computation time than the direct use of the watershed algorithm. Considering the practical needs of automated seed identification, this method did not employ methods such as dilation or erosion for image morphology processing, thereby preserving the original features of the image to the greatest extent possible. Additionally, the flax seed automated seed identification data real-time analysis system could process image information in batches. By executing data summarization functions, it automatically generated corresponding data table folders, storing the corresponding image data summary tables. Conclusions The proposed method exhibits superior computational accuracy and processing speed, with shorter operation time and robustness. It is highly adaptable and able to accurately acquire the morphological feature parameters of flax seeds in bulk, ensuring measurement errors remain within 10%, which could provide technical support for future flax seed evaluation and related industrial development.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Lightweighted Wheat Leaf Diseases and Pests Detection Model Based on Improved YOLOv8
    YANG Feng, YAO Xiaotong
    Smart Agriculture    2024, 6 (1): 147-157.   DOI: 10.12133/j.smartag.SA202309010
    Abstract1348)   HTML227)    PDF(pc) (1991KB)(22036)       Save

    Objective To effectively tackle the unique attributes of wheat leaf pests and diseases in their native environment, a high-caliber and efficient pest detection model named YOLOv8-SS (You Only Look Once Version 8-SS) was proposed. This innovative model is engineered to accurately identify pests, thereby providing a solid scientific foundation for their prevention and management strategies. Methods A total of 3 639 raw datasets of images of wheat leaf pests and diseases were collected from 6 different wheat pests and diseases in various farmlands in the Yuchong County area of Gansu Province, at different periods of time, using mobile phones. This collection demonstrated the team's proficiency and commitment to advancing agricultural research. The dataset was meticulously constructed using the LabelImg software to accurately label the images with targeted pest species. To guarantee the model's superior generalization capabilities, the dataset was strategically divided into a training set and a test set in an 8:2 ratio. The dataset includes thorough observations and recordings of the wheat leaf blade's appearance, texture, color, as well as other variables that could influence these characteristics. The compiled dataset proved to be an invaluable asset for both training and validation activities. Leveraging the YOLOv8 algorithm, an enhanced lightweight convolutional neural network, ShuffleNetv2, was selected as the basis network for feature extraction from images. This was accomplished by integrating a 3×3 Depthwise Convolution (DWConv) kernel, the h-swish activation function, and a Squeeze-and-Excitation Network (SENet) attention mechanism. These enhancements streamlined the model by diminishing the parameter count and computational demands, all while sustaining high detection precision. The deployment of these sophisticated methodologies exemplified the researchers' commitment and passion for innovation. The YOLOv8 model employs the SEnet attention mechanism module within both its Backbone and Neck components, significantly reducing computational load while bolstering accuracy. This method exemplifies the model's exceptional performance, distinguishing it from other models in the domain. By integrating a dedicated small target detection layer, the model's capabilities have been augmented, enabling more efficient and precise pest and disease detection. The introduction of a new detection feature map, sized 160×160 pixels, enables the network to concentrate on identifying small-targeted pests and diseases, thereby enhancing the accuracy of pest and disease recognition. Results and Discussion The YOLOv8-SS wheat leaf pests and diseases detection model has been significantly improved to accurately detect wheat leaf pests and diseases in their natural environment. By employing the refined ShuffleNet V2 within the DarkNet-53 framework, as opposed to the conventional YOLOv8, under identical experimental settings, the model exhibited a 4.53% increase in recognition accuracy and a 4.91% improvement in F1-Score, compared to the initial model. Furthermore, the incorporation of a dedicated small target detection layer led to a subsequent rise in accuracy and F1-Scores of 2.31% and 2.16%, respectively, despite a minimal upsurge in the number of parameters and computational requirements. The integration of the SEnet attention mechanism module into the YOLOv8 model resulted in a detection accuracy rate increase of 1.85% and an F1-Score enhancement of 2.72%. Furthermore, by swapping the original neural network architecture with an enhanced ShuffleNet V2 and appending a compact object detection sublayer (namely YOLOv8-SS), the resulting model exhibited a heightened recognition accuracy of 89.41% and an F1-Score of 88.12%. The YOLOv8-SS variant substantially outperformed the standard YOLOv8, showing a remarkable enhancement of 10.11% and 9.92% in accuracy, respectively. This outcome strikingly illustrates the YOLOv8-SS's prowess in balancing speed with precision. Moreover, it achieves convergence at a more rapid pace, requiring approximately 40 training epochs, to surpass other renowned models such as Faster R-CNN, MobileNetV2, SSD, YOLOv5, YOLOX, and the original YOLOv8 in accuracy. Specifically, the YOLOv8-SS boasted an average accuracy 23.01%, 15.13%, 11%, 25.21%, 27.52%, and 10.11% greater than that of the competing models, respectively. In a head-to-head trial involving a public dataset (LWDCD 2020) and a custom-built dataset, the LWDCD 2020 dataset yielded a striking accuracy of 91.30%, outperforming the custom-built dataset by a margin of 1.89% when utilizing the same network architecture, YOLOv8-SS. The AI Challenger 2018-6 and Plant-Village-5 datasets did not perform as robustly, achieving accuracy rates of 86.90% and 86.78% respectively. The YOLOv8-SS model has shown substantial improvements in both feature extraction and learning capabilities over the original YOLOv8, particularly excelling in natural environments with intricate, unstructured backdrops. Conclusion The YOLOv8-SS model is meticulously designed to deliver unmatched recognition accuracy while consuming a minimal amount of storage space. In contrast to conventional detection models, this groundbreaking model exhibits superior detection accuracy and speed, rendering it exceedingly valuable across various applications. This breakthrough serves as an invaluable resource for cutting-edge research on crop pest and disease detection within natural environments featuring complex, unstructured backgrounds. Our method is versatile and yields significantly enhanced detection performance, all while maintaining a lean model architecture. This renders it highly appropriate for real-world scenarios involving large-scale crop pest and disease detection.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Big Models in Agriculture: Key Technologies, Application and Future Directions
    GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu
    Smart Agriculture    2024, 6 (2): 1-13.   DOI: 10.12133/j.smartag.SA202403015
    Abstract2805)   HTML497)    PDF(pc) (1482KB)(3679)       Save

    [Significance] Big Models, or Foundation Models, have offered a new paradigm in smart agriculture. These models, built on the Transformer architecture, incorporate numerous parameters and have undergone extensive training, often showing excellent performance and adaptability, making them effective in addressing agricultural issues where data is limited. Integrating big models in agriculture promises to pave the way for a more comprehensive form of agricultural intelligence, capable of processing diverse inputs, making informed decisions, and potentially overseeing entire farming systems autonomously. [Progress] The fundamental concepts and core technologies of big models are initially elaborated from five aspects: the generation and core principles of the Transformer architecture, scaling laws of extending big models, large-scale self-supervised learning, the general capabilities and adaptions of big models, and the emerging capabilities of big models. Subsequently, the possible application scenarios of the big model in the agricultural field are analyzed in detail, the development status of big models is described based on three types of the models: Large language models (LLMs), large vision models (LVMs), and large multi-modal models (LMMs). The progress of applying big models in agriculture is discussed, and the achievements are presented. [Conclusions and Prospects] The challenges and key tasks of applying big models technology in agriculture are analyzed. Firstly, the current datasets used for agricultural big models are somewhat limited, and the process of constructing these datasets can be both expensive and potentially problematic in terms of copyright issues. There is a call for creating more extensive, more openly accessible datasets to facilitate future advancements. Secondly, the complexity of big models, due to their extensive parameter counts, poses significant challenges in terms of training and deployment. However, there is optimism that future methodological improvements will streamline these processes by optimizing memory and computational efficiency, thereby enhancing the performance of big models in agriculture. Thirdly, these advanced models demonstrate strong proficiency in analyzing image and text data, suggesting potential future applications in integrating real-time data from IoT devices and the Internet to make informed decisions, manage multi-modal data, and potentially operate machinery within autonomous agricultural systems. Finally, the dissemination and implementation of these big models in the public agricultural sphere are deemed crucial. The public availability of these models is expected to refine their capabilities through user feedback and alleviate the workload on humans by providing sophisticated and accurate agricultural advice, which could revolutionize agricultural practices.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Intelligent Identification of Crop Agronomic Traits and Morphological Structure Phenotypes: A Review
    ZHANG Jianhua, YAO Qiong, ZHOU Guomin, WU Wendi, XIU Xiaojie, WANG Jian
    Smart Agriculture    2024, 6 (2): 14-27.   DOI: 10.12133/j.smartag.SA202401015
    Abstract1661)   HTML110)    PDF(pc) (1376KB)(5922)       Save

    [Significance] The crop phenotype is the visible result of the complex interplay between crop genes and the environment. It reflects the physiological, ecological, and dynamic aspects of crop growth and development, serving as a critical component in the realm of advanced breeding techniques. By systematically analyzing crop phenotypes, researchers can gain valuable insights into gene function and identify genetic factors that influence important crop traits. This information can then be leveraged to effectively harness germplasm resources and develop breakthrough varieties. Utilizing data-driven, intelligent, dynamic, and non-invasive methods for measuring crop phenotypes allows researchers to accurately capture key growth traits and parameters, providing essential data for breeding and selecting superior crop varieties throughout the entire growth cycle. This article provides an overview of intelligent identification technologies for crop agronomic traits and morphological structural phenotypes. [Progress] Crop phenotype acquisition equipment serves as the essential foundation for acquiring, analyzing, measuring, and identifying crop phenotypes. This equipment enables detailed monitoring of crop growth status. The article presents an overview of the functions, performance, and applications of the leading high-throughput crop phenotyping platforms, as well as an analysis of the characteristics of various sensing and imaging devices used to obtain crop phenotypic information. The rapid advancement of high-throughput crop phenotyping platforms and sensory imaging equipment has facilitated the integration of cutting-edge imaging technology, spectroscopy technology, and deep learning algorithms. These technologies enable the automatic and high-throughput acquisition of yield, resistance, quality, and other relevant traits of large-scale crops, leading to the generation of extensive multi-dimensional, multi-scale, and multi-modal crop phenotypic data. This advancement supports the rapid progression of crop phenomics. The article also discusses the research progress of intelligent recognition technologies for agronomic traits such as crop plant height acquisition, crop organ detection, and counting, as well as crop ideotype recognition, crop morphological information measurement, and crop three-dimensional reconstruction for morphological structure intelligent recognition. Furthermore, this article outlines the main challenges faced in this field, including: difficulties in data collection in complex environments, high requirements for data scale, diversity, and preprocessing, the need to improve the lightweight nature and generalization ability of models, as well as the high cost of data collection equipment and the need to enhance practicality. [Conclusions and Prospects] Finally, this article puts forward the development directions of crop phenotype intelligent recognition technology, including: developing new and low cost intelligent field equipment for acquiring and analyzing crop phenotypes, enhancing the standardization and consistency of field crop phenotype acquisition, strengthening the generality of intelligent crop phenotype recognition models, researching crop phenotype recognition methods that involve multi-perspective, multimodal, multi-point continuous analysis, and spatiotemporal feature fusion, as well as improving model interpretability.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Identification and Severity Classification of Typical Maize Foliar Diseases Based on Hyperspectral Data
    SHEN Yanyan, ZHAO Yutao, CHEN Gengshen, LYU Zhengang, ZHAO Feng, YANG Wanneng, MENG Ran
    Smart Agriculture    2024, 6 (2): 28-39.   DOI: 10.12133/j.smartag.SA202310016
    Abstract1273)   HTML74)    PDF(pc) (1519KB)(837)       Save

    [Objective] In recent years, there has been a significant increase in the severity of leaf diseases in maize, with a noticeable trend of mixed occurrence. This poses a serious threat to the yield and quality of maize. However, there is a lack of studies that combine the identification of different types of leaf diseases and their severity classification, which cannot meet the needs of disease prevention and control under the mixed occurrence of different diseases and different severities in actual maize fields. [Methods] A method was proposed for identifying the types of typical leaf diseases in maize and classifying their severity using hyperspectral technology. Hyperspectral data of three leaf diseases of maize: northern corn leaf blight (NCLB), southern corn leaf blight (SCLB) and southern corn rust (SCR), were obtained through greenhouse pathogen inoculation and natural inoculation. The spectral data were preprocessed by spectral standardization, SG filtering, sensitive band extraction and vegetation index calculation, to explore the spectral characteristics of the three leaf diseases of maize. Then, the inverse frequency weighting method was utilized to balance the number of samples to reduce the overfitting phenomenon caused by sample imbalance. Relief-F and variable selection using random forests (VSURF) method were employed to optimize the sensitive spectral features, including band features and vegetation index features, to construct models for disease type identification based on the full stages of disease development (including all disease severities) and for individual disease severities using several representative machine learning approaches, demonstrating the effectiveness of the research method. Furthermore, the study individual occurrence severity classification models were also constructed for each single maize leaf disease, including the NCLB, SCLB and SCR severity classification models, respectively, aiming to achieve full-process recognition and disease severity classification for different leaf diseases. Overall accuracy (OA) and Macro F1 were used to evaluate the model accuracy in this study. Results and Discussion The research results showed significant spectrum changes of three kinds of maize leaf diseases primarily focusing on the visible (550-680 nm), red edge (740-760 nm), near-infrared (760-1 000 nm) and shortwave infrared (1 300-1 800 nm) bands. Disease-specific spectral features, optimized based on disease spectral response rules, effectively identified disease species and classify their severity. Moreover, vegetation index features were more effective in identifying disease-specific information than sensitive band features. This was primarily due to the noise and information redundancy present in the selected hyperspectral sensitive bands, whereas vegetation index could reduce the influence of background and atmospheric noise to a certain extent by integrating relevant spectral signals through band calculation, so as to achieve higher precision in the model. Among several machine learning algorithms, the support vector machine (SVM) method exhibited better robustness than random forest (RF) and decision tree (DT). In the full stage of disease development, the optimal overall accuracy (OA) of the disease classification model constructed by SVM based on vegetation index reached 77.51%, with a Macro F1 of 0.77, representing a 28.75% increase in OA and 0.30 higher of Macro F1 compared to the model based on sensitive bands. Additionally, the accuracy of the disease classification model with a single severity of the disease increased with the severity of the disease. The accuracy of disease classification during the early stage of disease development (OA=70.31%) closely approached that of the full disease development stage (OA=77.51%). Subsequently, in the moderate disease severity stage, the optimal accuracy of disease classification (OA=80.00%) surpassed the optimal accuracy of disease classification in the full disease development stage. Furthermore, the optimal accuracy of disease classification under severe severity reached 95.06%, with a Macro F1 of 0.94. This heightened accuracy during the severity stage can be attributed to significant changes in pigment content, water content and cell structure of the diseased leaves, intensifying the spectral response of each disease and enhancing the differentiation between different diseases. In disease severity classification model, the optimal accuracy of the three models for maize leaf disease severity all exceeded 70%. Among the three kinds of disease severity classification results, the NCLB severity classification model exhibited the best performance. The NCLB severity classification model, utilizing SVM based on the optimal vegetation index features, achieved an OA of 86.25%, with a Macro F1 of 0.85. In comparison, the accuracy of the SCLB severity classification model (OA=70.35%, Macro F1=0.70) and SCR severity classification model (OA=71.39%, Macro F1=0.69) were lower than that of NCLB. [Conclusions] The aforementioned results demonstrate the potential to effectively identify and classify the types and severity of common leaf diseases in maize using hyperspectral data. This lays the groundwork for research and provides a theoretical basis for large-scale crop disease monitoring, contributing to precision prevention and control as well as promoting green agriculture.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion
    ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu
    Smart Agriculture    2024, 6 (2): 40-48.   DOI: 10.12133/j.smartag.SA202310010
    Abstract1116)   HTML32)    PDF(pc) (1594KB)(329)       Save

    [Objective] The widespread prevalence of sclerotinia disease poses a significant challenge to the cultivation and supply of oilseed rape, not only results in substantial yield losses and decreased oil content in infected plant seeds but also severely impacts crop productivity and quality, leading to significant economic losses. To solve the problems of complex operation, environmental pollution, sample destruction and low detection efficiency of traditional chemical detection methods, a Bi-directional Gate Recurrent Unit (Bi-GRU) model based on space-spectrum feature fusion was constructed to achieve hyperspectral images (HSIs) segmentation of oilseed rape sclerotinia infected area. [Methods] The spectral characteristics of sclerotinia disease from a spectral perspective was initially explored. Significantly varying spectral reflectance was notably observed around 550 nm and within the wavelength range of 750-1 000 nm at different locations on rapeseed leaves. As the severity of sclerotinia infection increased, the differences in reflectance at these wavelengths became more pronounced. Subsequently, a rapeseed leaf sclerotinia disease dataset comprising 400 HSIs was curated using an intelligent data annotation tool. This dataset was divided into three subsets: a training set with 280 HSIs, a validation set with 40 HSIs, and a test set with 80 HSIs. Expanding on this, a 7×7 pixel neighborhood was extracted as the spatial feature of the target pixel, incorporating both spatial and spectral features effectively. Leveraging the Bi-GRU model enabled simultaneous feature extraction at any point within the sequence data, eliminating the impact of the order of spatial-spectral data fusion on the model's performance. The model comprises four key components: an input layer, hidden layers, fully connected layers, and an output layer. The Bi-GRU model in this study consisted of two hidden layers, each housing 512 GRU neurons. The forward hidden layer computed sequence information at the current time step, while the backward hidden layer retrieves the sequence in reverse, incorporating reversed-order information. These two hidden layers were linked to a fully connected layer, providing both forward and reversed-order information to all neurons during training. The Bi-GRU model included two fully connected layers, each with 1 000 neurons, and an output layer with two neurons representing the healthy and diseased classes, respectively. [Results and Discussions] To thoroughly validate the comprehensive performance of the proposed Bi-GRU model and assess the effectiveness of the spatial-spectral information fusion mechanism, relevant comparative analysis experiments were conducted. These experiments primarily focused on five key parameters—ClassAP(1), ClassAP(2), mean average precision (mAP), mean intersection over union (mIoU), and Kappa coefficient—to provide a comprehensive evaluation of the Bi-GRU model's performance. The comprehensive performance analysis revealed that the Bi-GRU model, when compared to mainstream convolutional neural network (CNN) and long short-term memory (LSTM) models, demonstrated superior overall performance in detecting rapeseed sclerotinia disease. Notably, the proposed Bi-GRU model achieved an mAP of 93.7%, showcasing a 7.1% precision improvement over the CNN model. The bidirectional architecture, coupled with spatial-spectral fusion data, effectively enhanced detection accuracy. Furthermore, the study visually presented the segmentation results of sclerotinia disease-infected areas using CNN, Bi-LSTM, and Bi-GRU models. A comparison with the Ground-Truth data revealed that the Bi-GRU model outperformed the CNN and Bi-LSTM models in detecting sclerotinia disease at various infection stages. Additionally, the Dice coefficient was employed to comprehensively assess the actual detection performance of different models at early, middle, and late infection stages. The dice coefficients for the Bi-GRU model at these stages were 83.8%, 89.4% and 89.2%, respectively. While early infection detection accuracy was relatively lower, the spatial-spectral data fusion mechanism significantly enhanced the effectiveness of detecting early sclerotinia infections in oilseed rape. [Conclusions] This study introduces a Bi-GRU model that integrates spatial and spectral information to accurately and efficiently identify the infected areas of oilseed rape sclerotinia disease. This approach not only addresses the challenge of detecting early stages of sclerotinia infection but also establishes a basis for high-throughput non-destructive detection of the disease.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Crop Pest Target Detection Algorithm in Complex Scenes:YOLOv8-Extend
    ZHANG Ronghua, BAI Xue, FAN Jiangchuan
    Smart Agriculture    2024, 6 (2): 49-61.   DOI: 10.12133/j.smartag.SA202311007
    Abstract1706)   HTML172)    PDF(pc) (2287KB)(40054)       Save

    [Objective] It is of great significance to improve the efficiency and accuracy of crop pest detection in complex natural environments, and to change the current reliance on expert manual identification in the agricultural production process. Targeting the problems of small target size, mimicry with crops, low detection accuracy, and slow algorithm reasoning speed in crop pest detection, a complex scene crop pest target detection algorithm named YOLOv8-Entend was proposed in this research. [Methods] Firstly, the GSConv was introduecd to enhance the model's receptive field, allowing for global feature aggregation. This mechanism enables feature aggregation at both node and global levels simultaneously, obtaining local features from neighboring nodes through neighbor sampling and aggregation operations, enhancing the model's receptive field and semantic understanding ability. Additionally, some Convs were replaced with lightweight Ghost Convolutions and HorBlock was utilized to capture longer-term feature dependencies. The recursive gate convolution employed gating mechanisms to remember and transmit previous information, capturing long-term correlations. Furthermore, Concat was replaced with BiFPN for richer feature fusion. The bidirectional fusion of depth features from top to bottom and from bottom to top enhances the transmission of feature information acrossed different network layers. Utilizing the VoVGSCSP module, feature maps of different scales were connected to create longer feature map vectors, increasing model diversity and enhancing small object detection. The convolutional block attention module (CBAM) attention mechanism was introduced to strengthen features of field pests and reduce background weights caused by complexity. Next, the Wise IoU dynamic non-monotonic focusing mechanism was implemented to evaluate the quality of anchor boxes using "outlier" instead of IoU. This mechanism also included a gradient gain allocation strategy, which reduced the competitiveness of high-quality anchor frames and minimizes harmful gradients from low-quality examples. This approach allowed WIoU to concentrate on anchor boxes of average quality, improving the network model's generalization ability and overall performance. Subsequently, the improved YOLOv8-Extend model was compared with the original YOLOv8 model, YOLOv5, YOLOv8-GSCONV, YOLOv8-BiFPN, and YOLOv8-CBAM to validate the accuracy and precision of model detection. Finally, the model was deployed on edge devices for inference verification to confirm its effectiveness in practical application scenarios. [Results and Discussions] The results indicated that the improved YOLOv8-Extend model achieved notable improvements in accuracy, recall, mAP@0.5, and mAP@0.5:0.95 evaluation indices. Specifically, there were increases of 2.6%, 3.6%, 2.4% and 7.2%, respectively, showcasing superior detection performance. YOLOv8-Extend and YOLOv8 run respectively on the edge computing device JETSON ORIN NX 16 GB and were accelerated by TensorRT, mAP@0.5 improved by 4.6%, FPS reached 57.6, meeting real-time detection requirements. The YOLOv8-Extend model demonstrated better adaptability in complex agricultural scenarios and exhibited clear advantages in detecting small pests and pests sharing similar growth environments in practical data collection. The accuracy in detecting challenging data saw a notable increased of 11.9%. Through algorithm refinement, the model showcased improved capability in extracting and focusing on features in crop pest target detection, addressing issues such as small targets, similar background textures, and challenging feature extraction. [Conclusions] The YOLOv8-Extend model introduced in this study significantly boosts detection accuracy and recognition rates while upholding high operational efficiency. It is suitable for deployment on edge terminal computing devices to facilitate real-time detection of crop pests, offering technological advancements and methodologies for the advancement of cost-effective terminal-based automatic pest recognition systems. This research can serve as a valuable resource and aid in the intelligent detection of other small targets, as well as in optimizing model structures.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Shrimp Diseases Detection Method Based on Improved YOLOv8 and Multiple Features
    XU Ruifeng, WANG Yaohua, DING Wenyong, YU Junqi, YAN Maocang, CHEN Chen
    Smart Agriculture    2024, 6 (2): 62-71.   DOI: 10.12133/j.smartag.SA201311014
    Abstract1497)   HTML54)    PDF(pc) (1597KB)(8760)       Save

    [Objective] In recent years, there has been a steady increase in the occurrence and fatality rates of shrimp diseases, causing substantial impacts in shrimp aquaculture. These diseases are marked by their swift onset, high infectivity, complex control requirements, and elevated mortality rates. With the continuous growth of shrimp factory farming, traditional manual detection approaches are no longer able to keep pace with the current requirements. Hence, there is an urgent necessity for an automated solution to identify shrimp diseases. The main goal of this research is to create a cost-effective inspection method using computer vision that achieves a harmonious balance between cost efficiency and detection accuracy. The improved YOLOv8 (You Only Look Once) network and multiple features were employed to detect shrimp diseases. [Methods] To address the issue of surface foam interference, the improved YOLOv8 network was applied to detect and extract surface shrimps as the primary focus of the image. This target detection approach accurately recognizes objects of interest in the image, determining their category and location, with extraction results surpassing those of threshold segmentation. Taking into account the cost limitations of platform computing power in practical production settings, the network was optimized by reducing parameters and computations, thereby improving detection speed and deployment efficiency. Additionally, the Farnberck optical flow method and gray level co-occurrence matrix (GLCM) were employed to capture the movement and image texture features of shrimp video clips. A dataset was created using these extracted multiple feature parameters, and a Support Vector Machine (SVM) classifier was trained to categorize the multiple feature parameters in video clips, facilitating the detection of shrimp health. [Results and Discussions] The improved YOLOv8 in this study effectively enhanced detection accuracy without increasing the number of parameters and flops. According to the results of the ablation experiment, replacing the backbone network with FasterNet lightweight backbone network significantly reduces the number of parameters and computation, albeit at the cost of decreased accuracy. However, after integrating the efficient multi-scale attention (EMA) on the neck, the mAP0.5 increased by 0.3% compared to YOLOv8s, while mAP0.95 only decreased by 2.1%. Furthermore, the parameter count decreased by 45%, and FLOPs decreased by 42%. The improved YOLOv8 exhibits remarkable performance, ranking second only to YOLOv7 in terms of mAP0.5 and mAP0.95, with respective reductions of 0.4% and 0.6%. Additionally, it possesses a significantly reduced parameter count and FLOPS compared to YOLOv7, matching those of YOLOv5. Despite the YOLOv7-Tiny and YOLOv8-VanillaNet models boasting lower parameters and Flops, their accuracy lags behind that of the improved YOLOv8. The mAP0.5 and mAP0.95 of YOLOv7-Tiny and YOLOv8-VanillaNet are 22.4%, 36.2%, 2.3%, and 4.7% lower than that of the improved YOLOv8, respectively. Using a support vector machine (SVM) trained on a comprehensive dataset incorporating multiple feature, the classifier achieved an impressive accuracy rate of 97.625%. The 150 normal fragments and the 150 diseased fragments were randomly selected as test samples. The classifier exhibited a detection accuracy of 89% on this dataset of the 300 samples. This result indicates that the combination of features extracted using the Farnberck optical flow method and GLCM can effectively capture the distinguishing dynamics of movement speed and direction between infected and healthy shrimp. In this research, the majority of errors stem from the incorrect recognition of diseased segments as normal segments, accounting for 88.2% of the total error. These errors can be categorized into three main types: 1) The first type occurs when floating foam obstructs the water surface, resulting in a small number of shrimp being extracted from the image. 2) The second type is attributed to changes in water movement. In this study, nanotubes were used for oxygenation, leading to the generation of sprays on the water surface, which affected the movement of shrimp. 3) The third type of error is linked to video quality. When the video's pixel count is low, the difference in optical flow between diseased shrimp and normal shrimp becomes relatively small. Therefore, it is advisable to adjust the collection area based on the actual production environment and enhance video quality. [Conclusions] The multiple features introduced in this study effectively capture the movement of shrimp, and can be employed for disease detection. The improved YOLOv8 is particularly well-suited for platforms with limited computational resources and is feasible for deployment in actual production settings. However, the experiment was conducted in a factory farming environment, limiting the applicability of the method to other farming environments. Overall, this method only requires consumer-grade cameras as image acquisition equipment and has lower requirements on the detection platform, and can provide a theoretical basis and methodological support for the future application of aquatic disease detection methods.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Zero-Shot Pest Identification Based on Generative Adversarial Networks and Visual-Semantic Alignment
    LI Tianjun, YANG Xinting, CHEN Xiao, HU Huan, ZHOU Zijie, LI Wenyong
    Smart Agriculture    2024, 6 (2): 72-84.   DOI: 10.12133/j.smartag.SA202312014
    Abstract1128)   HTML45)    PDF(pc) (2294KB)(463)       Save

    [Objective] Accurate identification of insect pests is crucial for the effective prevention and control of crop infestations. However, existing pest identification methods primarily rely on traditional machine learning or deep learning techniques that are trained on seen classes. These methods falter when they encounter unseen pest species not included in the training set, due to the absence of image samples. An innovative method was proposed to address the zero-shot recognition challenge for pests. [Methods] The novel zero-shot learning (ZSL) method proposed in this study was capable of identifying unseen pest species. First, a comprehensive pest image dataset was assembled, sourced from field photography conducted around Beijing over several years, and from web crawling. The final dataset consisted of 2 000 images across 20 classes of adult Lepidoptera insects, with 100 images per class. During data preprocessing, a semantic dataset was manually curated by defining attributes related to color, pattern, size, and shape for six parts: antennae, back, tail, legs, wings, and overall appearance. Each image was annotated to form a 65-dimensional attribute vector for each class, resulting in a 20×65 semantic attribute matrix with rows representing each class and columns representing attribute values. Subsequently, 16 classes were designated as seen classes, and 4 as unseen classes. Next, a novel zero-shot pest recognition method was proposed, focusing on synthesizing high-quality pseudo-visual features aligned with semantic information using a generator. The wasserstein generative adversarial networks (WGAN) architecture was strategically employed as the fundamental network backbone. Conventional generative adversarial networks (GANs) have been known to suffer from training instabilities, mode collapse, and convergence issues, which can severely hinder their performance and applicability. The WGAN architecture addresses these inherent limitations through a principled reformulation of the objective function. In the proposed method, the contrastive module was designed to capture highly discriminative visual features that could effectively distinguish between different insect classes. It operated by creating positive and negative pairs of instances within a batch. Positive pairs consisted of different views of the same class, while negative pairs were formed from instances belonging to different classes. The contrastive loss function encouraged the learned representations of positive pairs to be similar while pushing the representations of negative pairs apart. Tightly integrated with the WGAN structure, this module substantially improved the generation quality of the generator. Furthermore, the visual-semantic alignment module enforced consistency constraints from both visual and semantic perspectives. This module constructed a cross-modal embedding space, mapping visual and semantic features via two projection layers: One for mapping visual features into the cross-modal space, and another for mapping semantic features. The visual projection layer took the synthesized pseudo-visual features from the generator as input, while the semantic projection layer ingested the class-level semantic vectors. Within this cross-modal embedding space, the module enforced two key constraints: Maximizing the similarity between same-class visual-semantic pairs and minimizing the similarity between different-class pairs. This was achieved through a carefully designed loss function that encourages the projected visual and semantic representations to be closely aligned for instances belonging to the same class, while pushing apart the representations of different classes. The visual-semantic alignment module acted as a regularizer, preventing the generator from producing features that deviated from the desired semantic information. This regularization effect complemented the discriminative power gained from the contrastive module, resulting in a generator that produces high-quality, diverse, and semantically aligned pseudo-visual features. [Results and Discussions] The proposed method was evaluated on several popular ZSL benchmarks, including CUB, AWA, FLO, and SUN. The results demonstrated that the proposed method achieved state-of-the-art performance across these datasets, with a maximum improvement of 2.8% over the previous best method, CE-GZSL. This outcome fully demonstrated the method's broad effectiveness in different benchmarks and its outstanding generalization ability. On the self-constructed 20-class insect dataset, the method also exhibited exceptional recognition accuracy. Under the standard ZSL setting, it achieved a precise recognition rate of 77.4%, outperforming CE-GZSL by 2.1%. Under the generalized ZSL setting, it achieved a harmonic mean accuracy of 78.3%, making a notable 1.2% improvement. This metric provided a balanced assessment of the model's performance across seen and unseen classes, ensuring that high accuracy on unseen classes does not come at the cost of forgetting seen classes. These results on the pest dataset, coupled with the performance on public benchmarks, firmly validated the effectiveness of the proposed method. [Conclusions] The proposed zero-shot pest recognition method represents a step forward in addressing the challenges of pest management. It effectively generalized pest visual features to unseen classes, enabling zero-shot pest recognition. It can facilitate pests identification tasks that lack training samples, thereby assisting in the discovery and prevention of novel crop pests. Future research will focus on expanding the range of pest species to further enhance the model's practical applicability.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Agricultural Disease Named Entity Recognition with Pointer Network Based on RoFormer Pre-trained Model
    WANG Tong, WANG Chunshan, LI Jiuxi, ZHU Huaji, MIAO Yisheng, WU Huarui
    Smart Agriculture    2024, 6 (2): 85-94.   DOI: 10.12133/j.smartag.SA202311021
    Abstract1499)   HTML33)    PDF(pc) (1219KB)(830)       Save

    [Objective] With the development of agricultural informatization, a large amount of information about agricultural diseases exists in the form of text. However, due to problems such as nested entities and confusion of entity types, traditional named entities recognition (NER) methods often face challenges of low accuracy when processing agricultural disease text. To address this issue, this study proposes a new agricultural disease NER method called RoFormer-PointerNet, which combines the RoFormer pre-trained model with the PointerNet baseline model. The aim of this method is to improve the accuracy of entity recognition in agricultural disease text, providing more accurate data support for intelligent analysis, early warning, and prevention of agricultural diseases. [Methods] This method first utilized the RoFormer pre-trained model to perform deep vectorization processing on the input agricultural disease text. This step was a crucial foundation for the subsequent entity extraction task. As an advanced natural language processing model, the RoFormer pre-trained model's unique rotational position embedding approach endowed it with powerful capabilities in capturing textual positional information. In agricultural disease text, due to the diversity of terminology and the existence of polysemy, traditional entity recognition methods often faced challenges in confusing entity types. However, through its unique positional embedding mechanism, the RoFormer model was able to incorporate more positional information into the vector representation, effectively enriching the feature information of words. This characteristic enabled the model to more accurately distinguish between different entity types in subsequent entity extraction tasks, reducing the possibility of type confusion. After completing the vectorization representation of the text, this study further emploied a pointer network for entity extraction. The pointer network was an advanced sequence labeling approach that utilizes head and tail pointers to annotate entities within sentences. This labeling method was more flexible compared to traditional sequence labeling methods as it was not restricted by fixed entity structures, enabling the accurate extraction of all types of entities within sentences, including complex entities with nested relationships. In agricultural disease text, entity extraction often faced the challenge of nesting, such as when multiple different entity types are nested within a single disease symptom description. By introducing the pointer network, this study effectively addressed this issue of entity nesting, improving the accuracy and completeness of entity extraction. [Results and Discussions] To validate the performance of the RoFormer-PointerNet method, this study constructed an agricultural disease dataset, which comprised 2 867 annotated corpora and a total of 10 282 entities, including eight entity types such as disease names, crop names, disease characteristics, pathogens, infected areas, disease factors, prevention and control methods, and disease stages. In comparative experiments with other pre-trained models such as Word2Vec, BERT, and RoBERTa, RoFormer-PointerNet demonstrated superiority in model precision, recall, and F1-Score, achieving 87.49%, 85.76% and 86.62%, respectively. This result demonstrated the effectiveness of the RoFormer pre-trained model. Additionally, to verify the advantage of RoFormer-PointerNet in mitigating the issue of nested entities, this study compared it with the widely used bidirectional long short-term memory neural network (BiLSTM) and conditional random field (CRF) models combined with the RoFormer pre-trained model as decoding methods. RoFormer-PointerNet outperformed the RoFormer-BiLSTM, RoFormer-CRF, and RoFormer-BiLSTM-CRF models by 4.8%, 5.67% and 3.87%, respectively. The experimental results indicated that RoFormer-PointerNet significantly outperforms other models in entity recognition performance, confirming the effectiveness of the pointer network model in addressing nested entity issues. To validate the superiority of the RoFormer-PointerNet method in agricultural disease NER, a comparative experiment was conducted with eight mainstream NER models such as BiLSTM-CRF, BERT-BiLSTM-CRF, and W2NER. The experimental results showed that the RoFormer-PointerNet method achieved precision, recall, and F1-Score of 87.49%, 85.76% and 86.62%, respectively in the agricultural disease dataset, reaching the optimal level among similar methods. This result further verified the superior performance of the RoFormer-PointerNet method in agricultural disease NER tasks. [Conclusions] The agricultural disease NER method RoFormer-PointerNet, proposed in this study and based on the RoFormer pre-trained model, demonstrates significant advantages in addressing issues such as nested entities and type confusion during the entity extraction process. This method effectively identifies entities in Chinese agricultural disease texts, enhancing the accuracy of entity recognition and providing robust data support for intelligent analysis, early warning, and prevention of agricultural diseases. This research outcome holds significant importance for promoting the development of agricultural informatization and intelligence.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Fast Extracting Method for Strawberry Leaf Age and Canopy Width Based on Instance Segmentation Technology
    FAN Jiangchuan, WANG Yuanqiao, GOU Wenbo, CAI Shuangze, GUO Xinyu, ZHAO Chunjiang
    Smart Agriculture    2024, 6 (2): 95-106.   DOI: 10.12133/j.smartag.SA202310014
    Abstract784)   HTML44)    PDF(pc) (1903KB)(1396)       Save

    [Objective] There's a growing demand among plant cultivators and breeders for efficient methods to acquire plant phenotypic traits at high throughput, facilitating the establishment of mappings from phenotypes to genotypes. By integrating mobile phenotyping platforms with improved instance segmentation techniques, researchers have achieved a significant advancement in the automation and accuracy of phenotypic data extraction. Addressing the need for rapid extraction of leaf age and canopy width phenotypes in strawberry plants cultivated in controlled environments, this study introduces a novel high-throughput phenotyping extraction approach leveraging a mobile phenotyping platform and instance segmentation technology. [Methods] Data acquisition was conducted using a compact mobile phenotyping platform equipped with an array of sensors, including an RGB sensor, and edge control computers, capable of capturing overhead images of potted strawberry plants in greenhouses. Targeted adjustments to the network structure were made to develop an enhanced convolutional neural network (Mask R-CNN) model for processing strawberry plant image data and rapidly extracting plant phenotypic information. The model initially employed a split-attention networks (ResNeSt) backbone with a group attention module, replacing the original network to improve the precision and efficiency of image feature extraction. During training, the model adopted the Mosaic method, suitable for instance segmentation data augmentation, to expand the dataset of strawberry images. Additionally, it optimized the original cross-entropy classification loss function with a binary cross-entropy loss function to achieve better detection accuracy of plants and leaves. Based on this, the improved Mask R-CNN description involves post-processing of training results. It utilized the positional relationship between leaf and plant masks to statistically count the number of leaves. Additionally, it employed segmentation masks and image calibration against true values to calculate the canopy width of the plant. [Results and Discussions] This research conducted a thorough evaluation and comparison of the performance of an improved Mask R-CNN model, underpinned by the ResNeSt-101 backbone network. This model achieved a commendable mask accuracy of 80.1% and a detection box accuracy of 89.6%. It demonstrated the ability to efficiently estimate the age of strawberry leaves, demonstrating a high plant detection rate of 99.3% and a leaf count accuracy of 98.0%. This accuracy marked a significant improvement over the original Mask R-CNN model and meeting the precise needs for phenotypic data extraction. The method displayed notable accuracy in measuring the canopy widths of strawberry plants, with errors falling below 5% in about 98.1% of cases, highlighting its effectiveness in phenotypic dimension evaluation. Moreover, the model operated at a speed of 12.9 frames per second (FPS) on edge devices, effectively balancing accuracy and operational efficiency. This speed proved adequate for real-time applications, enabling rapid phenotypic data extraction even on devices with limited computational capabilitie. [Conclusions] This study successfully deployed a mobile phenotyping platform combined with instance segmentation techniques to analyze image data and extract various phenotypic indicators of strawberry plant. Notably, the method demonstrates remarkable robustness. The seamless fusion of mobile platforms and advanced image processing methods not only enhances efficiency but also ignifies a shift towards data-driven decision-making in agriculture.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Transplant Status Detection Algorithm of Cabbage in the Field Based on Improved YOLOv8s
    WU Xiaoyan, GUO Wei, ZHU Yiping, ZHU Huaji, WU Huarui
    Smart Agriculture    2024, 6 (2): 107-117.   DOI: 10.12133/j.smartag.SA202401008
    Abstract416)   HTML67)    PDF(pc) (3310KB)(454)       Save

    [Objective] Currently, the lack of computerized systems to monitor the quality of cabbage transplants is a notable shortcoming in the agricultural industry, where transplanting operations play a crucial role in determining the overall yield and quality of the crop. To address this problem, a lightweight and efficient algorithm was developed to monitor the status of cabbage transplants in a natural environment. [Methods] First, the cabbage image dataset was established, the cabbage images in the natural environment were collected, the collected image data were filtered and the transplanting status of the cabbage was set as normal seedling (upright and intact seedling), buried seedling (whose stems and leaves were buried by the soil) and exposed seedling (whose roots were exposed), and the dataset was manually categorized and labelled using a graphical image annotation tool (LabelImg) so that corresponding XML files could be generated. And the dataset was pre-processed with data enhancement methods such as flipping, cropping, blurring and random brightness mode to eliminate the scale and position differences between the cabbages in the test and training sets and to improve the imbalance of the data. Then, a cabbage transplantation state detection model based on YOLOv8s (You Only Look Once Version 8s) was designed. To address the problem that light and soil have a large influence on the identification of the transplantation state of cabbage in the natural environment, a multi-scale attention mechanism was embedded to increase the number of features in the model, and a multi-scale attention mechanism was embedded to increase the number of features in the model. Embedding the multi-scale attention mechanism to increase the algorithm's attention to the target region and improve the network's attention to target features at different scales, so as to improve the model's detection efficiency and target recognition accuracy, and reduce the leakage rate; by combining with deformable convolution, more useful target information was captured to improve the model's target recognition and convergence effect, and the model complexity increased by C3-layer convolution was reduced, which further reduced the model complexity. Due to the unsatisfactory localization effect of the algorithm, the focal extended intersection over union loss (Focal-EIoU Loss) was introduced to solve the problem of violent oscillation of the loss value caused by low-quality samples, and the influence weight of high-quality samples on the loss value was increased while the influence of low-quality samples was suppressed, so as to improve the convergence speed and localization accuracy of the algorithm. [Results and Discussions] Eventually, the algorithm was put through a stringent testing phase, yielding a remarkable recognition accuracy of 96.2% for the task of cabbage transplantation state. This was an improvement of 2.8% over the widely used YOLOv8s. Moreover, when benchmarked against other prominent target detection models, the algorithm emerged as a clear winner. It showcased a notable enhancement of 3% and 8.9% in detection performance compared to YOLOv3-tiny. Simultaneously, it also managed to achieve a 3.7% increase in the recall rate, a metric that measured the efficiency of the algorithm in identifying actual targets among false positives. On a comparative note, the algorithm outperformed YOLOv5 in terms of recall rate by 1.1%, 2% and 1.5%, respectively. When pitted against the robust faster region-based convolutional neural network (Faster R-CNN), the algorithm demonstrated a significant boost in recall rate by 20.8% and 11.4%, resulting in an overall improvement of 13%. A similar trend was observed when the algorithm was compared to the single shot multibox detector (SSD) model, with a notable 9.4% and 6.1% improvement in recall rate. The final experimental results show that when the enhanced model was compared with YOLOv7-tiny, the recognition accuracy was increased by 3%, and the recall rate was increased by 3.5%. These impressive results validated the superiority of the algorithm in terms of accuracy and localization ability within the target area. The algorithm effectively eliminates interferenced factors such as soil and background impurities, thereby enhancing its performance and making it an ideal choice for tasks such as cabbage transplantation state recognition. [Conclusions] The experimental results show that the proposed cabbage transplantation state detection method can meet the accuracy and real-time requirements for the identification of cabbage transplantation state, and the detection accuracy and localization accuracy of the improved model perform better when the target is smaller and there are weeds and other interferences in the background. Therefore, the method proposed in this study can improve the efficiency of cabbage transplantation quality measurement, reduce the time and labor, and improve the automation of field transplantation quality survey.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s
    ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu
    Smart Agriculture    2024, 6 (2): 118-127.   DOI: 10.12133/j.smartag.SA202401005
    Abstract476)   HTML34)    PDF(pc) (2060KB)(452)       Save

    [Objective] The fresh cut rose industry has shown a positive growth trend in recent years, demonstrating sustained development. Considering the current fresh cut roses grading process relies on simple manual grading, which results in low efficiency and accuracy, a new model named Flower-YOLOv8s was proposed for grading detection of fresh cut roses. [Methods] The flower head of a single rose against a uniform background was selected as the primary detection target. Subsequently, fresh cut roses were categorized into four distinct grades: A, B, C, and D. These grades were determined based on factors such as color, size, and freshness, ensuring a comprehensive and objective grading system. A novel dataset contenting 778 images was specifically tailored for rose fresh-cut flower grading and detection was constructed. This dataset served as the foundation for our subsequent experiments and analysis. To further enhance the performance of the YOLOv8s model, two cutting-edge attention convolutional block attention module (CBAM) and spatial attention module (SAM) were introduced separately for comparison experiments. These modules were seamlessly integrated into the backbone network of the YOLOv8s model to enhance its ability to focus on salient features and suppressing irrelevant information. Moreover, selecting and optimizing the SAM module by reducing the number of convolution kernels, incorporating a depth-separable convolution module and reducing the number of input channels to improve the module's efficiency and contribute to reducing the overall computational complexity of the model. The convolution layer (Conv) in the C2f module was replaced by the depth separable convolution (DWConv), and then combined with Optimized-SAM was introduced into the C2f structure, giving birth to the Flower-YOLOv8s model. Precision, recall and F1 score were used as evaluation indicators. [Results and Discussions] Ablation results showed that the Flower-YOLOv8s model proposed in this study, namely YOLOv8s+DWConv+Optimized-SAM, the recall rate was 95.4%, which was 3.8% higher and the average accuracy, 0.2% higher than that of YOLOv8s with DWConv alone. When compared to the baseline model YOLOv8s, the Flower-YOLOv8s model exhibited a remarkable 2.1% increase in accuracy, reaching a peak of 97.4%. Furthermore, mAP was augmented by 0.7%, demonstrating the model's superior performance across various evaluation metrics. The effectiveness of adding Optimized-SAM was proved. From the overall experimental results, the number of parameters of Flower-YOLOv8s was reduced by 2.26 M compared with the baseline model YOLOv8s, and the reasoning time was also reduced from 15.6 to 5.7 ms. Therefore, the Flower-YOLOv8s model was superior to the baseline model in terms of accuracy rate, average accuracy, number of parameters, detection time and model size. The performances of Flower-YOLOv8s network were compared with other target detection algorithms of Fast-RCNN, Faster-RCNN and first-stage target detection models of SSD, YOLOv3, YOLOv5s and YOLOv8s to verify the superiority under the same condition and the same data set. The average precision values of the Flower-YOLOv8s model proposed in this study were 2.6%, 19.4%, 6.5%, 1.7%, 1.9% and 0.7% higher than those of Fast-RCNN, Faster-RCNN, SSD, YOLOv3, YOLOv5s and YOLOv8s, respectively. Compared with YOLOv8s with higher recall rate, Flower-YOLOv8s reduced model size, inference time and parameter number by 4.5 MB, 9.9 ms and 2.26 M, respectively. Notably, the Flower-YOLOv8s model achieved these improvements while simultaneously reducing model parameters and computational complexity. [Conclusions] The Flower-YOLOv8s model not only demonstrated superior detection accuracy but also exhibited a reduction in model parameters and computational complexity. This lightweight yet powerful model is highly suitable for real-time applications, making it a promising candidate for flower grading and detection tasks in the agricultural and horticultural industries.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    HI-FPN: A Hierarchical Interactive Feature Pyramid Network for Accurate Wheat Lodging Localization Across Multiple Growth Periods
    PANG Chunhui, CHEN Peng, XIA Yi, ZHANG Jun, WANG Bing, ZOU Yan, CHEN Tianjiao, KANG Chenrui, LIANG Dong
    Smart Agriculture    2024, 6 (2): 128-139.   DOI: 10.12133/j.smartag.SA202310002
    Abstract363)   HTML29)    PDF(pc) (2072KB)(428)       Save

    [Objective] Wheat lodging is one of the key isuess threatening stable and high yields. Lodging detection technology based on deep learning generally limited to identifying lodging at a single growth stage of wheat, while lodging may occur at various stages of the growth cycle. Moreover, the morphological characteristics of lodging vary significantly as the growth period progresses, posing a challenge to the feature capturing ability of deep learning models. The aim is exploring a deep learning-based method for detecting wheat lodging boundaries across multiple growth stages to achieve automatic and accurate monitoring of wheat lodging. [Methods] A model called Lodging2Former was proposed, which integrates the innovative hierarchical interactive feature pyramid network (HI-FPN ) on top of the advanced segmentation model Mask2Former. The key focus of this network design lies in enhancing the fusion and interaction between feature maps at adjacent hierarchical levels, enabling the model to effectively integrate feature information at different scales. Building upon this, even in complex field backgrounds, the Lodging2Former model significantly enhances the recognition and capturing capabilities of wheat lodging features at multiple growth stages. [Results and Discussions] The Lodging2Former model demonstrated superiority in mean average precision (mAP) compared to several mainstream algorithms such as mask region-based convolutional neural network (Mask R-CNN), segmenting objects by locations (SOLOv2), and Mask2Former. When applied to the scenario of detecting lodging in mixed growth stage wheat, the model achieved mAP values of 79.5%, 40.2%, and 43.4% at thresholds of 0.5, 0.75, and 0.5 to 0.95, respectively. Compared to Mask2Former, the performance of the improved model was enhanced by 1.3% to 4.3%. Compared to SOLOv2, a growth of 9.9% to 30.7% in mAP was achieved; and compared to the classic Mask R-CNN, a significant improvement of 24.2% to 26.4% was obtained. Furthermore, regardless of the IoU threshold standard, the Lodging2Former exhibited the best detection performance, demonstrating good robustness and adaptability in the face of potential influencing factors such as field environment changes. [Conclusions] The experimental results indicated that the proposed HI-FPN network could effectively utilize contextual semantics and detailed information in images. By extracting rich multi-scale features, it enabled the Lodging2Former model to more accurately detect lodging areas of wheat across different growth stages, confirming the potential and value of HI-FPN in detecting lodging in multi-growth-stage wheat.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Three-Dimensional Dynamic Growth and Yield Simulation Model of Daylily Plants
    ZHANG Yue, LI Weijia, HAN Zhiping, ZHANG Kun, LIU Jiawen, HENKE Michael
    Smart Agriculture    2024, 6 (2): 140-153.   DOI: 10.12133/j.smartag.SA202310011
    Abstract394)   HTML36)    PDF(pc) (2579KB)(1608)       Save

    [Objective] The daylily, a perennial herb in the lily family, boasts a rich nutritional profile. Given its economic importance, enhancing its yield is a crucial objective. However, current research on daylily cultivation is limited, especially regarding three-dimensional dynamic growth simulation of daylily plants. In order to establish a technological foundation for improved cultivation management, growth dynamics prediction, and the development of plant variety types in daylily crops, this study introduces an innovative three-dimensional dynamic growth and yield simulation model for daylily plants. [Methods] The open-source GroIMP software platform was used to simulate and visualize three-dimensional scenes. With Datong daylily, the primary cultivated variety of daylily in the Datong area, as the research subject, a field experiment was conducted from March to September 2022, which covered the growth season of daylily. Through actual cultivation experiment measurements, morphological data and leaf photosynthetic physiological parameters of daylily leaves, flower stems, flower buds, and other organs were collected. The functional-structural plant model (FSPM) platform's three-dimensional modeling technology was employed to establish the Cloud Cover-based solar radiation models (CSRMs) and the Farquhar, von Camerer, and Berry model (FvCB model) suitable for daylily. Moreover, based on the source-sink relationship of daylily, the carbon allocation model of daylily photosynthetic products was developed. By using the β growth function, the growth simulation model of daylily organs was constructed, and the daily morphological data of daylily during the growth period were calculated, achieving the three-dimensional dynamic growth and yield simulation of daylily plants. Finally, the model was validated with measured data. [Results and Discussions] The coefficient of determination (R2) between the measured and simulated outdoor surface solar radiation was 0.87, accompanied by a Root Mean Squared Error (RMSE) of 28.52 W/m2. For the simulated model of each organ of the daylily plant, the R2 of the measured against the predicted values ranged from 0.896 to 0.984, with an RMSE varying between 1.4 and 17.7 cm. The R2 of the average flower bud yield simulation was 0.880, accompanied by an RMSE of 0.5 g. The overall F-value spanned from 82.244 to 1 168.533, while the Sig. value was consistently below the 0.05 significance level, suggesting a robust fit and statistical significance for the aforementioned models. Subsequently, a thorough examination of the light interaction, temperature influences, and photosynthetic attributes of daylily leaves throughout their growth cycle was carried out. The findings revealed that leaf nutrition growth played a pivotal role in the early phase of daylily's growth, followed by the contribution of leaf and flower stem nutrition in the middle stage, and finally the growth of daylily flower buds, which is the crucial period for yield formation, in the later stages. Analyzing the photosynthetic traits of daylily leaves comprehensively, it was observed that the photosynthetic rate was relatively low in the early spring as the new leaves were initially emerging and reached a plateau during the summer. Considering real-world climate conditions, the actual net photosynthetic rate was marginally lower than the rate verified under optimal conditions, with the simulated net assimilation rate typically ranging from 2 to 4 μmol CO2/(m2·s). [Conclusions] The three-dimensional dynamic growth model of daylily plants proposed in this study can faithfully articulate the growth laws and morphological traits of daylily plants across the three primary growth stages. This model not only illustrates the three-dimensional dynamic growth of daylily plants but also effectively mimics the yield data of daylily flower buds. The simulation outcomes concur with actual conditions, demonstrating a high level of reliability.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Smart Agriculture    2024, 6 (3): 0-0.  
    Abstract18)            Save
    Related Articles | Metrics | Comments0
    Research Advances and Development Trend of Mountainous Tractor Leveling and Anti-Rollover System
    MU Xiaodong, YANG Fuzeng, DUAN Luojia, LIU Zhijie, SONG Zhuoying, LI Zonglin, GUAN Shouqing
    Smart Agriculture    2024, 6 (3): 1-16.   DOI: 10.12133/j.smartag.SA202312015
    Abstract800)   HTML102)    PDF(pc) (2448KB)(3657)       Save

    [Significance] The mechanization, automation and intelligentization of agricultural equipment are key factors to improve operation efficiency, free up labor force and promote the sustainable development of agriculture. It is also the hot spot of research and development of agricultural machinery industry in the future. In China, hills and mountains serves as vital production bases for agricultural products, accounting for about 70% of the country's land area. In addition, these regions face various environmental factors such as steep slopes, narrow road, small plots, complex terrain and landforms, as well as harsh working environment. Moreover, there is a lack of reliable agricultural machinery support across various production stages, along with a shortage of theoretical frameworks to guide the research and development of agricultural machinery tailored to hilly and mountainous locales. [Progress] This article focuses on the research advances of tractor leveling and anti-overturning systems in hilly and mountainous areas, including tractor body, cab and seat leveling technology, tractor rear suspension and implement leveling slope adaptive technology, and research progress on tractor anti-overturning protection devices and warning technology. The vehicle body leveling mechanism can be roughly divided into five types based on its different working modes: parallel four bar, center of gravity adjustable, hydraulic differential high, folding and twisting waist, and omnidirectional leveling. These mechanisms aim to address the issue of vehicle tilting and easy overturning when traversing or working on sloping or rugged roads. By keeping the vehicle body posture horizontal or adjusting the center of gravity within a stable range, the overall driving safety of the vehicle can be improved to ensure the accuracy of operation. Leveling the driver's cab and seats can mitigate the lateral bumps experienced by the driver during rough or sloping operations, reducing driver fatigue and minimizing strain on the lumbar and cervical spine, thereby enhancing driving comfort. The adaptive technology of tractor rear suspension and implement leveling on slopes can ensure that the tractor maintains consistent horizontal contact with the ground in hilly and mountainous areas, avoiding changes in the posture of the suspended implement with the swing of the body or the driving path, which may affect the operation effect. The tractor rollover protection device and warning technology have garnered significant attention in recent years. Prioritizing driver safety, rollover warning system can alert the driver in advance of the dangerous state of the tractor, automatically adjust the vehicle before rollover, or automatically open the rollover protection device when it is about to rollover, and timely send accident reports to emergency contacts, thereby ensuring the safety of the driver to the greatest extent possible. [Conclusions and Prospects] The future development directions of hill and mountain tractor leveling, anti-overturning early warning, unmanned, automatic technology were looked forward: Structure optimization, high sensitivity, good stability of mountain tractor leveling system research; Study on copying system of agricultural machinery with good slope adaptability; Research on anti-rollover early warning technology of environment perception and automatic interference; Research on precision navigation technology, intelligent monitoring technology and remote scheduling and management technology of agricultural machinery; Theoretical study on longitudinal stability of sloping land. This review could provide reference for the research and development of high reliability and high safety mountain tractor in line with the complex working environment in hill and mountain areas.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Research Advances and Prospects on Rapid Acquisition Technology of Farmland Soil Physical and Chemical Parameters
    QI Jiangtao, CHENG Panting, GAO Fangfang, GUO Li, ZHANG Ruirui
    Smart Agriculture    2024, 6 (3): 17-33.   DOI: 10.12133/j.smartag.SA202404003
    Abstract749)   HTML114)    PDF(pc) (1524KB)(5216)       Save

    [Significance] Soil stands as the fundamental pillar of agricultural production, with its quality being intrinsically linked to the efficiency and sustainability of farming practices. Historically, the intensive cultivation and soil erosion have led to a marked deterioration in some arable lands, characterized by a sharp decrease in soil organic matter, diminished fertility, and a decline in soil's structural integrity and ecological functions. In the strategic framework of safeguarding national food security and advancing the frontiers of smart and precision agriculture, the march towards agricultural modernization continues apace, intensifying the imperative for meticulous soil quality management. Consequently, there is an urgent need for the rrapid acquisition of soil's physical and chemical parameters. Interdisciplinary scholars have delved into soil monitoring research, achieving notable advancements that promise to revolutionize the way we understand and manage soil resource. [Progress] Utilizing the the Web of Science platform, a comprehensive literature search was conducted on the topic of "soil," further refined with supplementary keywords such as "electrochemistry", "spectroscopy", "electromagnetic", "ground-penetrating radar", and "satellite". The resulting literature was screened, synthesized, and imported into the CiteSpace visualization tool. A keyword emergence map was yielded, which delineates the trajectory of research in soil physical and chemical parameter detection technology. Analysis of the keyword emergence map reveals a paradigm shift in the acquisition of soil physical and chemical parameters, transitioning from conventional indoor chemical and spectrometry analyses to outdoor, real-time detection methods. Notably, soil sensors integrated into drones and satellites have garnered considerable interest. Additionally, emerging monitoring technologies, including biosensing and terahertz spectroscopy, have made their mark in recent years. Drawing from this analysis, the prevailing technologies for soil physical and chemical parameter information acquisition in agricultural fields have been categorized and summarized. These include: 1. Rapid Laboratory Testing Techniques: Primarily hinged on electrochemical and spectrometry analysis, these methods offer the dual benefits of time and resource efficiency alongside high precision; 2. Rapid Near-Ground Sensing Techniques: Leveraging electromagnetic induction, ground-penetrating radar, and various spectral sensors (multispectral, hyperspectral, and thermal infrared), these techniques are characterized by their high detection accuracy and swift operation. 3. Satellite Remote Sensing Techniques: Employing direct inversion, indirect inversion, and combined analysis methods, these approaches are prized for their efficiency and extensive coverage. 4. Innovative Rapid Acquisition Technologies: Stemming from interdisciplinary research, these include biosensing, environmental magnetism, terahertz spectroscopy, and gamma spectroscopy, each offering novel avenues for soil parameter detection. An in-depth examination and synthesis of the principles, applications, merits, and limitations of each technology have been provided. Moreover, a forward-looking perspective on the future trajectory of soil physical and chemical parameter acquisition technology has been offered, taking into account current research trends and hotspots. [Conclusions and Prospects] Current advancements in the technology for rapaid acquiring soil physical and chemical parameters in agricultural fields have been commendable, yet certain challenges persist. The development of near-ground monitoring sensors is constrained by cost, and their reliability, adaptability, and specialization require enhancement to effectively contend with the intricate and varied conditions of farmland environments. Additionally, remote sensing inversion techniques are confronted with existing limitations in data acquisition, processing, and application. To further develop the soil physical and chemical parameter acquisition technology and foster the evolution of smart agriculture, future research could beneficially delve into the following four areas: Designing portable, intelligent, and cost-effective near-ground soil information acquisition systems and equipment to facilitate rapid on-site soil information detection; Enhancing the performance of low-altitude soil information acquisition platforms and refine the methods for data interpretation to ensure more accurate insights; Integrating multifactorial considerations to construct robust satellite remote sensing inversion models, leveraging diverse and open cloud computing platforms for in-depth data analysis and mining; Engaging in thorough research on the fusion of multi-source data in the acquisition of soil physical and chemical parameter information, developing soil information sensing algorithms and models with strong generalizability and high reliability to achieve rapaid, precise, and intelligent acquisition of soil parameters.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Remote Sensing Identification Method of Cultivated Land at Hill County of Sichuan Basin Based on Deep Learning
    LI Hao, DU Yuqiu, XIAO Xingzhu, CHEN Yanxi
    Smart Agriculture    2024, 6 (3): 34-45.   DOI: 10.12133/j.smartag.SA202308002
    Abstract369)   HTML48)    PDF(pc) (2649KB)(2443)       Save

    [Objective] To fully utilize and protect farmland and lay a solid foundation for the sustainable use of land, it is particularly important to obtain real-time and precise information regarding farmland area, distribution, and other factors. Leveraging remote sensing technology to obtain farmland data can meet the requirements of large-scale coverage and timeliness. However, the current research and application of deep learning methods in remote sensing for cultivated land identification still requires further improvement in terms of depth and accuracy. The objective of this study is to investigate the potential application of deep learning methods in remote sensing for identifying cultivated land in the hilly areas of Southwest China, to provide insights for enhancing agricultural land utilization and regulation, and for harmonizing the relationship between cultivated land and the economy and ecology. [Methods] Santai county, Mianyang city, Sichuan province, China (30°42'34"~31°26'35"N, 104°43'04"~105°18'13"E) was selected as the study area. High-resolution imagery from two scenes captured by the Gaofen-6 (GF-6) satellite served as the primary image data source. Additionally, 30-meter resolution DEM data from the United States National Aeronautics and Space Administration (NASA) in 2020 was utilized. A land cover data product, SinoLC-1, was also incorporated for comparative evaluation of the accuracy of various extraction methods' results. Four deep learning models, namely Unet, PSPNet, DeeplabV3+, and Unet++, were utilized for remote sensing land identification research in cultivated areas. The study also involved analyzing the identification accuracy of cultivated land in high-resolution satellite images by combining the results of the random forest (RF) algorithm along with the deep learning models. A validation dataset was constructed by randomly generating 1 000 vector validation points within the research area. Concurrently, Google Earth satellite images with a resolution of 0.3 m were used for manual visual interpretation to determine the land cover type of the pixels where the validation points are located. The identification results of each model were compared using a confusion matrix to compute five accuracy evaluation metrics: Overall accuracy (OA), intersection over union (IoU), mean intersection over union (MIoU), F1-Score, and Kappa Coefficient to assess the cultivated land identification accuracy of different models and data products. [Results and Discussions] The deep learning models displayed significant advances in accuracy evaluation metrics, surpassing the performance of traditional machine learning approaches like RF and the latest land cover product, SinoLC-1 Landcover. Among the models assessed, the UNet++ model performed the best, its F1-Score, IoU, MIoU, OA, and Kappa coefficient values were 0.92, 85.93%, 81.93%, 90.60%, and 0.80, respectively. DeeplabV3+, UNet, and PSPNet methods followed suit. These performance metrics underscored the superior accuracy of the UNet++ model in precisely identifying and segmenting cultivated land, with a remarkable increase in accuracy of nearly 20% than machine learning methods and 50% for land cover products. Four typical areas of town, water body, forest land and contiguous cultivated land were selected to visually compare the results of cultivated land identification results. It could be observed that the deep learning models generally exhibited consistent distribution patterns with the satellite imageries, accurately delineating the boundaries of cultivated land and demonstrating overall satisfactory performance. However, due to the complex features in remote sensing images, the deep learning models still encountered certain challenges of omission and misclassification in extracting cultivated land. Among them, the UNet++ model showed the closest overall extraction results to the ground truth and exhibited advantages in terms of completeness of cultivated land extraction, discrimination between cultivated land and other land classes, and boundary extraction compared to other models. Using the UNet++ model with the highest recognition accuracy, two types of images constructed with different features—solely spectral features and spectral combined with terrain features—were utilized for cultivated land extraction. Based on the three metrics of IoU, OA, and Kappa, the model incorporating both spectral and terrain features showed improvements of 0.98%, 1.10%, and 0.01% compared to the model using only spectral features. This indicated that fusing spectral and terrain features can achieve information complementarity, further enhancing the identification effectiveness of cultivated land. [Conclusions] This study focuses on the practicality and reliability of automatic cultivated land extraction using four different deep learning models, based on high-resolution satellite imagery from the GF-6 in Santai county in China. Based on the cultivated land extraction results in Santai county and the differences in network structures among the four deep learning models, it was found that the UNet++ model, based on UNet, can effectively improve the accuracy of cultivated land extraction by introducing the mechanism of skip connections. Overall, this study demonstrates the effectiveness and practical value of deep learning methods in obtaining accurate farmland information from high-resolution remote sensing imagery.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Remote Sensing Extraction Method of Terraced Fields Based on Improved DeepLab v3+
    ZHANG Jun, CHEN Yuyan, QIN Zhenyu, ZHANG Mengyao, ZHANG Jun
    Smart Agriculture    2024, 6 (3): 46-57.   DOI: 10.12133/j.smartag.SA202312028
    Abstract490)   HTML42)    PDF(pc) (2806KB)(1055)       Save

    [Objective] The accurate estimation of terraced field areas is crucial for addressing issues such as slope erosion control, water retention, soil conservation, and increasing food production. The use of high-resolution remote sensing imagery for terraced field information extraction holds significant importance in these aspects. However, as imaging sensor technologies continue to advance, traditional methods focusing on shallow features may no longer be sufficient for precise and efficient extraction in complex terrains and environments. Deep learning techniques offer a promising solution for accurately extracting terraced field areas from high-resolution remote sensing imagery. By utilizing these advanced algorithms, detailed terraced field characteristics with higher levels of automation can be better identified and analyzed. The aim of this research is to explore a proper deep learning algorithm for accurate terraced field area extraction in high-resolution remote sensing imagery. [Methods] Firstly, a terraced dataset was created using high-resolution remote sensing images captured by the Gaofen-6 satellite during fallow periods. The dataset construction process involved data preprocessing, sample annotation, sample cropping, and dataset partitioning with training set augmentation. To ensure a comprehensive representation of terraced field morphologies, 14 typical regions were selected as training areas based on the topographical distribution characteristics of Yuanyang county. To address misclassifications near image edges caused by limited contextual information, a sliding window approach with a size of 256 pixels and a stride of 192 pixels in each direction was utilized to vary the positions of terraced fields in the images. Additionally, geometric augmentation techniques were applied to both images and labels to enhance data diversity, resulting in a high-resolution terraced remote sensing dataset. Secondly, an improved DeepLab v3+ model was proposed. In the encoder section, a lightweight MobileNet v2 was utilized instead of Xception as the backbone network for the semantic segmentation model. Two shallow features from the 4th and 7th layers of the MobileNet v2 network were extracted to capture relevant information. To address the need for local details and global context simultaneously, the multi-scale feature fusion (MSFF) module was employed to replace the atrous spatial pyramid pooling (ASPP) module. The MSFF module utilized a series of dilated convolutions with increasing dilation rates to handle information loss. Furthermore, a coordinate attention mechanism was applied to both shallow and deep features to enhance the network's understanding of targets. This design aimed to lightweight the DeepLab v3+ model while maintaining segmentation accuracy, thus improving its efficiency for practical applications. [Results and Discussions] The research findings reveal the following key points: (1) The model trained using a combination of near-infrared, red, and green (NirRG) bands demonstrated the optimal overall performance, achieving precision, recall, F1-Score, and intersection over union (IoU) values of 90.11%, 90.22%, 90.17% and 82.10%, respectively. The classification results indicated higher accuracy and fewer discrepancies, with an error in reference area of only 12 hm2. (2) Spatial distribution patterns of terraced fields in Yuanyang county were identified through the deep learning model. The majority of terraced fields were found within the slope range of 8º to 25º, covering 84.97% of the total terraced area. Additionally, there was a noticeable concentration of terraced fields within the altitude range of 1 000 m to 2 000 m, accounting for 95.02% of the total terraced area. (3) A comparison with the original DeepLab v3+ network showed that the improved DeepLab v3+ model exhibited enhancements in terms of precision, recall, F1-Score, and IoU by 4.62%, 2.61%, 3.81% and 2.81%, respectively. Furthermore, the improved DeepLab v3+ outperformed UNet and the original DeepLab v3+ in terms of parameter count and floating-point operations. Its parameter count was only 28.6% of UNet and 19.5% of the original DeepLab v3+, while the floating-point operations were only 1/5 of UNet and DeepLab v3+. This not only improved computational efficiency but also made the enhanced model more suitable for resource-limited or computationally less powerful environments. The lightweighting of the DeepLab v3+ network led to improvements in accuracy and speed. However, the slection of the NirGB band combination during fallow periods significantly impacted the model's generalization ability. [Conclusions] The research findings highlights the significant contribution of the near-infrared (NIR) band in enhancing the model's ability to learn terraced field features. Comparing different band combinations, it was evident that the NirRG combination resulted in the highest overall recognition performance and precision metrics for terraced fields. In contrast to PSPNet, UNet, and the original DeepLab v3+, the proposed model showcased superior accuracy and performance on the terraced field dataset. Noteworthy improvements were observed in the total parameter count, floating-point operations, and the Epoch that led to optimal model performance, outperforming UNet and DeepLab v3+. This study underscores the heightened accuracy of deep learning in identifying terraced fields from high-resolution remote sensing imagery, providing valuable insights for enhanced monitoring and management of terraced landscapes.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Ecological Risk Assessment of Cultivated Land Based on Landscape Pattern: A Case Study of Tongnan District, Chongqing
    ZHANG Xingshan, YANG Heng, MA Wenqiu, YANG Minli, WANG Haiyi, YOU Yong, HUI Yunting, GONG Zeqi, WANG Tianyi
    Smart Agriculture    2024, 6 (3): 58-68.   DOI: 10.12133/j.smartag.SA202306008
    Abstract369)   HTML24)    PDF(pc) (1636KB)(613)       Save

    [Objective] Farmland consolidation for agricultural mechanization in hilly and mountainous areas can alter the landscape pattern, elevation, slope and microgeomorphology of cultivated land. It is of great significance to assess the ecological risk of cultivated land to provide data reference for the subsequent farmland consolidation for agricultural mechanization. This study aims to assess the ecological risk of cultivated land before and after farmland consolidation for agricultural mechanization in hilly and mountainous areas, and to explore the relationship between cultivated land ecological risk and cultivated land slope. [Methods] Twenty counties in Tongnan district of Chongqing city was selected as the assessment units. Based on the land use data in 2010 and 2020 as two periods, ArcGIS 10.8 and Excel software were used to calculate landscape pattern indices. The weights for each index were determined by entropy weight method, and an ecological risk assessment model was constructed, which was used to reveal the temporal and spatial change characteristics of ecological risk. Based on the principle of mathematical statistics, the correlation analysis between cultivated land ecological risk and cultivated land slope was carried out, which aimed to explore the relationship between cultivated land ecological risk and cultivated land slope. [Results and Discussions] Comparing to 2010, patch density (PD), division (D), fractal dimension (FD), and edge density (ED) of cultivated land all decreased in 2020, while meant Patch Size (MPS) increased, indicating an increase in the contiguity of cultivated land. The mean shape index (MSI) of cultivated land increased, indicating that the shape of cultivated land tended to be complicated. The landscape disturbance index (U) decreased from 0.97 to 0.94, indicating that the overall resistance to disturbances in cultivated land has increased. The landscape vulnerability index (V) increased from 2.96 to 3.20, indicating that the structure of cultivated land become more fragile. The ecological risk value of cultivated land decreased from 3.10 to 3.01, indicating the farmland consolidation for agricultural mechanization effectively improved the landscape pattern of cultivated land and enhanced the safety of the agricultural ecosystem. During the two periods, the ecological risk areas were primarily composed of low-risk and relatively low-risk zones. The area of low-risk zones increased by 6.44%, mainly expanding towards the northern part, while the area of relatively low-risk zones increased by 6.17%, primarily spreading towards the central-eastern and southeastern part. The area of moderate-risk zones increased by 24.4%, mainly extending towards the western and northwestern part, while the area of relatively high-risk zones decreased by 60.70%, with some new additions spreading towards the northeastern part. The area of high-risk zones increased by 16.30%, with some new additions extending towards the northwest part. Overall, the ecological safety zones of cultivated relatively increased. The cultivated land slope was primarily concentrated in the range of 2° to 25°. On the one hand, when the cultivated land slope was less than 15°, the proportion of the slope area was negatively correlated with the ecological risk value. On the other hand, when the slope was above 15°, the proportion of the slope area was positively correlated with the ecological risk value. In 2010, there was a highly significant correlation between the proportion of slope area and ecological risk value for cultivated land slope within the ranges of 5° to 8°, 15° to 25°, and above 25°, with corresponding correlation coefficients of 0.592, 0.609, and 0.849, respectively. In 2020, there was a highly significant correlation between the proportion of slope area and ecological risk value for cultivated land slope within the ranges of 2° to 5°, 5° to 8°, 15° to 25°, and above 25°, with corresponding correlation coefficients of 0.534, 0.667, 0.729, and 0.839, respectively. [Conclusions] The assessment of cultivated land ecological risk in Tongnan district of Chongqing city before and after the farmland consolidation for agricultural mechanization, as well as the analysis of the correlation between ecological risk and cultivated land slope, demonstrate that the farmland consolidation for agricultural mechanization can reduce cultivated land ecological risk, and the proportion of cultivated land slope can be an important basis for precision guidance in the farmland consolidation for agricultural mechanization. Considering the occurrence of moderate sheet erosion from a slope of 5° and intense erosion from a slope of 10° to 15°, and taking into account the reduction of ecological risk value and the actual topographic conditions, the subsequent farmland consolidation for agricultural mechanization in Tongnan district should focus on areas with cultivated land slope ranging from 5° to 8° and 15° to 25°.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Trajectory Tracking Method of Agricultural Machinery Multi-Robot Formation Operation Based on MPC Delay Compensator
    LUAN Shijie, SUN Yefeng, GONG Liang, ZHANG Kai
    Smart Agriculture    2024, 6 (3): 69-81.   DOI: 10.12133/j.smartag.SA202306013
    Abstract381)   HTML31)    PDF(pc) (1797KB)(871)       Save

    [Objective] The technology of multi-machine convoy driving has emerged as a focal point in the field of agricultural mechanization. By organizing multiple agricultural machinery units into convoys, unified control and collaborative operations can be achieved. This not only enhances operational efficiency and reduces costs, but also minimizes human labor input, thereby maximizing the operational potential of agricultural machinery. In order to solve the problem of communication delay in cooperative control of multi-vehicle formation and its compensation strategy, the trajectory control method of multi-vehicle formation was proposed based on model predictive control (MPC) delay compensator. [Methods] The multi-vehicle formation cooperative control strategy was designed, which introduced the four-vehicle formation cooperative scenario in three lanes, and then introduced the design of the multi-vehicle formation cooperative control architecture, which was respectively enough to establish the kinematics and dynamics model and equations of the agricultural machine model, and laied down a sturdy foundation for solving the formation following problem later. The testing and optimization of automatic driving algorithms based on real vehicles need to invest too much time and economic costs, and were subject to the difficulties of laws and regulations, scene reproduction and safety, etc. Simulation platform testing could effectively solve the above question. For the agricultural automatic driving multi-machine formation scenarios, the joint simulation platform Carsim and Simulink were used to simulate and validate the formation driving control of agricultural machines. Based on the single-machine dynamics model of the agricultural machine, a delay compensation controller based on MPC was designed. Feedback correction first detected the actual output of the object and then corrected the model-based predicted output with the actual output and performed a new optimization. Based on the above model, the nonlinear system of kinematics and dynamics was linearized and discretized in order to ensure the real-time solution. The objective function was designed so that the agricultural machine tracks on the desired trajectory as much as possible. And because the operation range of the actuator was limited, the control increment and control volume were designed with corresponding constraints. Finally, the control increment constraints were solved based on the front wheel angle constraints, front wheel angle increments, and control volume constraints of the agricultural machine. [Results and Discussions] Carsim and MATLAB/Simulink could be effectively compatible, enabling joint simulation of software with external solvers. When the delay step size d=5 was applied with delay compensation, the MPC response was faster and smoother; the speed error curve responded faster and gradually stabilized to zero error without oscillations. Vehicle 1 effectively changed lanes in a short time and maintains the same lane as the lead vehicle. In the case of a longer delay step size d =10, controllers without delay compensation showed more significant performance degradation. Even under higher delay conditions, MPC with delay compensation applied could still quickly respond with speed error and longitudinal acceleration gradually stabilizing to zero error, avoiding oscillations. The trajectory of Vehicle 1 indicated that the effectiveness of the delay compensation mechanism decreased under extreme delay conditions. The simulation results validated the effectiveness of the proposed formation control algorithm, ensuring that multiple vehicles could successfully change lanes to form queues while maintaining specific distances and speeds. Furthermore, the communication delay compensation control algorithm enables vehicles with added delay to effectively complete formation tasks, achieving stable longitudinal and lateral control. This confirmed the feasibility of the model predictive controller with delay compensation proposed. [Conclusions] At present, most of the multi-machine formation coordination is based on simulation platform for verification, which has the advantages of safety, economy, speed and other aspects, however, there's still a certain gap between the idealized model in the simulation platform and the real machine experiment. Therefore, multi-machine formation operation of agricultural equipment still needs to be tested on real machines under sound laws and regulations.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Adaptive Time Horizon MPC Path Tracking Control Method for Mowing Robot
    HE Qing, JI Jie, FENG Wei, ZHAO Lijun, ZHANG Bohan
    Smart Agriculture    2024, 6 (3): 82-93.   DOI: 10.12133/j.smartag.SA202401010
    Abstract363)   HTML25)    PDF(pc) (2278KB)(794)       Save

    [Objective] The traditional predictive control approach usually employs a fixed time horizon and often overlooks the impact of changes in curvature and road bends. This oversight leads to subpar tracking performance and inadequate adaptability of robots for navigating curves and paths. Although extending the time horizon of the standard fixed time horizon model predictive control (MPC) can improve curve path tracking accuracy, it comes with high computational costs, making it impractical in situations with restricted computing resources. Consequently, an adaptive time horizon MPC controller was developed to meet the requirements of complex tasks such as autonomous mowing. [Methods] Initially, it was crucial to establish a kinematic model for the mowing robot, which required employing Taylor linearization and Euler method discretization techniques to ensure accurate path tracking. The prediction equation for the error model was derived after conducting a comprehensive analysis of the robot's kinematics model employed in mowing. Second, the size of the previewing area was determined by utilizing the speed data and reference path information gathered from the mowing robot. The region located a certain distance ahead of the robot's current position, was identified to as the preview region, enabling a more accurate prediction of the robot's future traveling conditions. Calculations for both the curve factor and curve change factor were carried out within this preview region. The curvature factor represented the initial curvature of the path, while the curvature change factor indicated the extent of curvature variation in this region. These two variables were then fed into a fuzzy controller, which adjusted the prediction time horizon of the MPC. The integration enabled the mowing robot to promptly adjust to changes in the path's curvature, thereby improving its accuracy in tracking the desired trajectory. Additionally, a novel technique for triggering MPC execution was developed to reduce computational load and improve real-time performance. This approach ensured that MPC activation occurred only when needed, rather than at every time step, resulting in reduced computational expenses especially during periods of smooth robot motion where unnecessary computation overhead could be minimized. By meeting kinematic and dynamic constraints, the optimization algorithm successfully identified an optimal control sequence, ultimately enhancing stability and reliability of the control system. Consequently, these set of control algorithms facilitated precise path tracking while considering both kinematic and dynamic limitations in complex environments. [Results and Discussion] The adaptive time-horizon MPC controller effectively limited the maximum absolute heading error and maximum absolute lateral error to within 0.13 rad and 11 cm, respectively, surpassing the performance of the MPC controller in the control group. Moreover, compared to both the first and fourth groups, the adaptive time-horizon MPC controller achieved a remarkable reduction of 75.39% and 57.83% in mean values for lateral error and heading error, respectively (38.38% and 31.84%, respectively). Additionally, it demonstrated superior tracking accuracy as evidenced by its significantly smaller absolute standard deviation of lateral error (0.025 6 m) and course error (0.025 5 rad), outperforming all four fixed time-horizon MPC controllers tested in the study. Furthermore, this adaptive approach ensured precise tracking and control capabilities for the mowing robot while maintaining a remarkably low average solution time of only 0.004 9 s, notably faster than that observed with other control data sets-reducing computational load by approximately 10.9 ms compared to maximum time-horizon MPC. [Conclusions] The experimental results demonstrated that the adaptive time-horizon MPC tracking approach effectively addressed the trade-off between control accuracy and computational complexity encountered in fixed time-horizon MPC. By dynamically adjusting the time horizon length the and performing MPC calculations based on individual events, this approach can more effectively handle scenarios with restricted computational resources, ensuring superior control precision and stability. Furthermore, it achieves a balance between control precision and real-time performance in curve route tracking for mowing robots, offering a more practical and reliable solution for their practical application.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Localization Method for Agricultural Robots Based on Fusion of LiDAR and IMU
    LIU Yang, JI Jie, PAN Deng, ZHAO Lijun, LI Mingsheng
    Smart Agriculture    2024, 6 (3): 94-106.   DOI: 10.12133/j.smartag.SA202401009
    Abstract587)   HTML52)    PDF(pc) (3329KB)(1071)       Save

    [Objective] High-precision localization technology serves as the crucial foundation in enabling the autonomous navigation operations of intelligent agricultural robots. However, the traditional global navigation satellite system (GNSS) localization method faces numerous limitations, such as tree shadow, electromagnetic interference, and other factors in the agricultural environment brings challenges to the accuracy and reliability of localization technology. To address the deficiencies and achieve precise localization of agricultural robots independent of GNSS, a localization method was proposed based on the fusion of three-dimensional light detection and ranging (LiDAR) data and inertial measurement unit (IMU) information to enhance localization accuracy and reliability. [Methods] LiDAR was used to obtain point cloud data in the agricultural environment and realize self-localization via point cloud matching. By integrating real-time motion parameter measurements from the IMU with LiDAR data, a high-precision localization solution for agricultural robots was achieved through a specific fusion algorithm. Firstly, the LiDAR-obtained point cloud data was preprocessed and the depth map was used to save the data. This approach could reduce the dimensionality of the original LiDAR point cloud, and eliminate the disorder of the original LiDAR point cloud arrangement, facilitating traversal and clustering through graph search. Given the presence of numerous distinct crops like trees in the agricultural environment, an angle-based clustering method was adopted. Specific angle-based clustering criteria were set to group the point cloud data, leading to the segmentation of different clusters of points, and obvious crops in the agricultural environment was effectively perceived. Furthermore, to improve the accuracy and stability of positioning, an improved three-dimensional normal distribution transform (3D-NDT) localization algorithm was proposed. This algorithm operated by matching the LiDAR-scanned point cloud data in real time with the pre-existing down sampled point cloud map to achieve real-time localization. Considering that direct down sampling of LiDAR point clouds in the agricultural environment could result in the loss of crucial environmental data, a point cloud clustering operation was used in place of down sampling operation, thereby improving matching accuracy and positioning precision. Secondly, to address potential constraints and shortcomings of using a single sensor for robot localization, a multi-sensor information fusion strategy was deployed to improve the localization accuracy. Specifically, the extended Kalman filter algorithm (EKF) was chosen to fuse the localization data from LiDAR point cloud and the IMU odometer information. The IMU provided essential motion parameters such as acceleration and angular velocity of the agricultural robot, and by combining with the LiDAR-derived localization information, the localization of the agricultural robot could be more accurately estimated. This fusion approach maximized the advantages of different sensors, compensated for their individual limitations, and improved the overall localization accuracy of the agricultural robot. [Results and Discussions] A series of experimental results in the Gazebo simulation environment of the robot operating system (ROS) and real operation scenarios showed that the fusion localization method proposed had significant advantages. In the simulation environment, the average localization errors of the proposed multi-sensor data fusion localization method were 1.7 and 1.8 cm, respectively, while in the experimental scenario, these errors were 3.3 and 3.3 cm, respectively, which were significantly better than the traditional 3D-NDT localization algorithm. These findings showed that the localization method proposed in this study could achieve high-precision localization in the complex agricultural environment, and provide reliable localization assistance for the autonomous functioning of agricultural robots. [Conclusions] The proposed localization method based on the fusion of LiDAR data and IMU information provided a novel localization solution for the autonomous operation of agricultural robots in areas with limited GNSS reception. Through the comprehensive utilization of multi-sensor information and adopting advanced data processing and fusion algorithms, the localization accuracy of agricultural robots could be significantly improved, which could provide a new reference for the intelligence and automation of agricultural production.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Design and Test of Dust Removal Seeding Rate Monitoring System for Rapeseed Seeders
    LI Qiang, YU Qiuli, LI Haopeng, XU Chunbao, DING Youchun
    Smart Agriculture    2024, 6 (3): 107-117.   DOI: 10.12133/j.smartag.SA202401011
    Abstract300)   HTML11)    PDF(pc) (1747KB)(354)       Save

    [Objective] The pneumatic rapeseed seeder easily inhales the dust generated during live broadcast operations into the seeding pipe, and then releases it along with the rapeseed. Consequently, when monitoring the rapeseed flow, dust interference can affect the flow, detection sensitivity and accuracy. This research aims to develop a dust removal rapeseed seeding rate monitoring system suitable for air-assisted pneumatic rapeseed seeders to improve the transparency and intelligence of the sowing process. [Methods] The monitoring system comprised a dust removal rapeseed seed flow detection device and a sowing monitoring terminal, which could be adjusted for different seeders widths by altering the number of detection devices. The rapeseed stream sensing structure operated on the principle of photoelectric induction. A delicate light layer was generated using an LED light source and a narrow slit structure. The convex lens condenses the light and directed it onto the sensing area of the silicon photovoltaic cell. When the rapeseed seeds pass through the sensing light layer, the silicon photovoltaic cell produced a voltage change signal. The signal converts it into a pulse signal that can be recognized by the microcontroller. A dust removal mechanism was designed by analyzing dust sources in the seeding system during normal field operation of the air-assisted rapeseed seeding machine and understanding the impact mechanism of the dust detection device on the accuracy of rapeseed flow monitoring. This mechanism employed a transparent plate to protect the photoelectric induction device in a relatively enclosed space and used a stepper motor screw mechanism to generate friction between the transparent plate and the dust removal cloth for effective dust removal. The appropriate size of the dust shield was determined by comparing its movement stroke with other structural dimensions of the detection device. The relationship between the silicon photocells voltage and detection accuracy was established through experiments at seeding frequencies of 10‒40 Hz. To ensure that the real-time detection accuracy was not less than 90%, the dust removal control threshold was set at 82% of the initial voltage value. In order to prevent congestion and data loss during data transmission and improve the scalability and compatibility of the monitoring system, data transmission between the detection device and the monitoring terminal was implemented based on the CAN2.0A communication protocol. The structural framework and monitoring terminal functions of the rapeseed sowing monitoring system were outlined. Software functions of the detection device were designed to meet the dust removal, communication, and rapeseed flow detection needs. The program execution process of the detection device was explained. In order to provide data support for the dust flow rate that should be controlled at various seeding frequencies during the bench test, experiments were conducted in the field to obtain theoretical data. [Results and Discussions] The comparison bench test of the detection device indicates that with the average seeding frequency ranging from 12.4 to 36.3 Hz and the average dust flow rate ranging from 252 to 386 mg/s, the detection accuracy after two dust removal cycles without a dustproof and dust removal detection device was not higher than 80.2%. The dust detection device with dust removal got an accuracy rate of not less than 90.2%, and the average detection accuracy rate within a single dust removal cycle was not less than 93.6%. The seeding amount monitoring bench test showed that when the average seeding frequency was no higher than 37.6 Hz, the seeding rate monitoring accuracy was not less than 92.2%. Furthermore, the field sowing experiment results demonstrated that at a normal operating speed (2.8‒4.6 km/h) of the rapeseed direct seeder, with a field sowing frequency of 14.8‒31.1 Hz, the accuracy of sowing quantity monitoring was not less than 93.1%. [Conclusions] The rapeseed sowing quality monitoring system provides effective support for precise detection even when operating in dusty conditions with the pneumatic rapeseed direct seeder. In the future, by integrating positioning data, sowing information, and fertilization monitoring data through CAN bus technology, a comprehensive field sowing and fertilization status map can be created to further enhance the system's capabilities.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Recognition Method of Facility Cucumber Farming Behaviours Based on Improved SlowFast Model
    HE Feng, WU Huarui, SHI Yangming, ZHU Huaji
    Smart Agriculture    2024, 6 (3): 118-127.   DOI: 10.12133/j.smartag.SA202402001
    Abstract348)   HTML104)    PDF(pc) (1737KB)(450)       Save

    [Objective] The identification of agricultural activities plays a crucial role for greenhouse vegetables production, particularly in the precise management of cucumber cultivation. By monitoring and analyzing the timing and procedures of agricultural operations, effective guidance can be provided for agricultural production, leading to increased crop yield and quality. However, in practical applications, the recognition of agricultural activities in cucumber cultivation faces significant challenges. The complex and ever-changing growing environment of cucumbers, including dense foliage and internal facility structures that may obstruct visibility, poses difficulties in recognizing agricultural activities. Additionally, agricultural tasks involve various stages such as planting, irrigation, fertilization, and pruning, each with specific operational intricacies and skill requirements. This requires the recognition system to accurately capture the characteristics of various complex movements to ensure the accuracy and reliability of the entire recognition process. To address the complex challenges, an innovative algorithm: SlowFast-SMC-ECA (SlowFast-Spatio-Temporal Excitation, Channel Excitation, Motion Excitation-Efficient Channel Attention) was proposed for the recognition of agricultural activity behaviors in cucumber cultivation within facilities. [Methods] This algorithm represents a significant enhancement to the traditional SlowFast model, with the goal of more accurately capturing hand motion features and crucial dynamic information in agricultural activities. The fundamental concept of the SlowFast model involved processing video streams through two distinct pathways: the Slow Pathway concentrated on capturing spatial detail information, while the Fast Pathway emphasized capturing temporal changes in rapid movements. To further improve information exchange between the Slow and Fast pathways, lateral connections were incorporated at each stage. Building upon this foundation, the study introduced innovative enhancements to both pathways, improving the overall performance of the model. In the Fast Pathway, a multi-path residual network (SMC) concept was introduced, incorporating convolutional layers between different channels to strengthen temporal interconnectivity. This design enabled the algorithm to sensitively detect subtle temporal variations in rapid movements, thereby enhancing the recognition capability for swift agricultural actions. Meanwhile, in the Slow Pathway, the traditional residual block was replaced with the ECA-Res structure, integrating an effective channel attention mechanism (ECA) to improve the model's capacity to capture channel information. The adaptive adjustment of channel weights by the ECA-Res structure enriched feature expression and differentiation, enhancing the model's understanding and grasp of key spatial information in agricultural activities. Furthermore, to address the challenge of class imbalance in practical scenarios, a balanced loss function (Smoothing Loss) was developed. By introducing regularization coefficients, this loss function could automatically adjust the weights of different categories during training, effectively mitigating the impact of class imbalance and ensuring improved recognition performance across all categories. [Results and Discussions] The experimental results significantly demonstrated the outstanding performance of the improved SlowFast-SMC-ECA model on a specially constructed agricultural activity dataset. Specifically, the model achieved an average recognition accuracy of 80.47%, representing an improvement of approximately 3.5% compared to the original SlowFast model. This achievement highlighted the effectiveness of the proposed improvements. Further ablation studies revealed that replacing traditional residual blocks with the multi-path residual network (SMC) and ECA-Res structures in the second and third stages of the SlowFast model leads to superior results. This highlighted that the improvements made to the Fast Pathway and Slow Pathway played a crucial role in enhancing the model's ability to capture details of agricultural activities. Additional ablation studies also confirmed the significant impact of these two improvements on improving the accuracy of agricultural activity recognition. Compared to existing algorithms, the improved SlowFast-SMC-ECA model exhibited a clear advantage in prediction accuracy. This not only validated the potential application of the proposed model in agricultural activity recognition but also provided strong technical support for the advancement of precision agriculture technology. In conclusion, through careful refinement and optimization of the SlowFast model, it was successfully enhanced the model's recognition capabilities in complex agricultural scenarios, contributing valuable technological advancements to precision management in greenhouse cucumber cultivation. [Conclusions] By introducing advanced recognition technologies and intelligent algorithms, this study enhances the accuracy and efficiency of monitoring agricultural activities, assists farmers and agricultural experts in managing and guiding the operational processes within planting facilities more efficiently. Moreover, the research outcomes are of immense value in improving the traceability system for agricultural product quality and safety, ensuring the reliability and transparency of agricultural product quality.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Identification Method of Kale Leaf Ball Based on Improved UperNet
    ZHU Yiping, WU Huarui, GUO Wang, WU Xiaoyan
    Smart Agriculture    2024, 6 (3): 128-137.   DOI: 10.12133/j.smartag.SA202401020
    Abstract392)   HTML112)    PDF(pc) (1568KB)(656)       Save

    [Objective] Kale is an important bulk vegetable crop worldwide, its main growth characteristics are outer leaves and leaf bulbs. The traits of leaf bulb kale are crucial for adjusting water and fertilizer parameters in the field to achieve maximum yield. However, various factors such as soil quality, light exposure, leaf overlap, and shading can affect the growth of in practical field conditions. The similarity in color and texture between leaf bulbs and outer leaves complicates the segmentation process for existing recognition models. In this paper, the segmentation of kale outer leaves and leaf bulbs in complex field background was proposed, using pixel values to determine leaf bulb size for intelligent field management. A semantic segmentation algorithm, UperNet-ESA was proposed to efficiently and accurately segment nodular kale outer leaf and leaf bulb in field scenes using the morphological features of the leaf bulbs and outer leaves of nodular kale to realize the intelligent management of nodular kale in the field. [Methods] The UperNet-ESA semantic segmentation algorithm, which uses the unified perceptual parsing network (UperNet) as an efficient semantic segmentation framework, is more suitable for extracting crop features in complex environments by integrating semantic information across different scales. The backbone network was improved using ConvNeXt, which is responsible for feature extraction in the model. The similarity between kale leaf bulbs and outer leaves, along with issues of leaf overlap affecting accurate target contour localization, posed challenges for the baseline network, leading to low accuracy. ConvNeXt effectively combines the strengths of convolutional neural networks (CNN) and Transformers, using design principles from Swin Transformer and building upon ResNet50 to create a highly effective network structure. The simplicity of the ConvNeXt design not only enhances segmentation accuracy with minimal model complexity, but also positions it as a top performer among CNN architectures. In this study, the ConvNeXt-B version was chosen based on considerations of computational complexity and the background characteristics of the knotweed kale image dataset. To enhance the model's perceptual acuity, block ratios for each stage were set at 3:3:27:3, with corresponding channel numbers of 128, 256, 512 and 1 024, respectively. Given the visual similarity between kale leaf bulbs and outer leaves, a high-efficiency channel attention mechanism was integrated into the backbone network to improve feature extraction in the leaf bulb region. By incorporating attention weights into feature mapping through residual inversion, attention parameters were cyclically trained within each block, resulting in feature maps with attentional weights. This iterative process facilitated the repeated training of attentional parameters and enhanced the capture of global feature information. To address challenges arising from direct pixel addition between up-sampling and local features, potentially leading to misaligned context in feature maps and erroneous classifications at kale leaf boundaries, a feature alignment module and feature selection module were introduced into the feature pyramid network to refine target boundary information extraction and enhance model segmentation accuracy. [Results and Discussions] The UperNet-ESA semantic segmentation model outperforms the current mainstream UNet model, PSPNet model, DeepLabV3+ model in terms of segmentation accuracy, where mIoU and mPA reached 92.45% and 94.32%, respectively, and the inference speed of up to 16.6 frames per second (fps). The mPA values were better than that of the UNet model, PSPNet model, ResNet-50 based, MobilenetV2, and DeepLabV3+ model with Xception as the backbone, showing improvements of 11.52%, 13.56%, 8.68%, 4.31%, and 6.21%, respectively. Similarly, the mIoU exhibited improvements of 12.21%, 13.04%, 10.65%, 3.26% and 7.11% compared to the mIoU of the UNet-based model, PSPNet model, and DeepLabV3+ model based on the ResNet-50, MobilenetV2, and Xception backbones, respectively. This performance enhancement can be attributed to the introduction of the ECA module and the improvement made to the feature pyramid network in this model, which strengthen the judgement of the target features at each stage to obtain effective global contextual information. In addition, although the PSPNet model had the fastest inference speed, the overall accuracy was too low to for developing kale semantic segmentation models. On the contrary, the proposed model exhibited superior inference speed compared to all other network models. [Conclusions] The experimental results showed that the UperNet-ESA semantic segmentation model proposed in this study outperforms the original network in terms of performance. The improved model achieves the best accuracy-speed balance compared to the current mainstream semantic segmentation networks. In the upcoming research, the current model will be further optimized and enhanced, while the kale dataset will be expanded to include a wider range of samples of nodulated kale leaf bulbs. This expansion is intended to provide a more robust and comprehensive theoretical foundation for intelligent kale field management.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Severity Grading Model for Camellia Oleifera Anthracnose Infection Based on Improved YOLACT
    NIE Ganggang, RAO Honghui, LI Zefeng, LIU Muhua
    Smart Agriculture    2024, 6 (3): 138-147.   DOI: 10.12133/j.smartag.SA202402002
    Abstract352)   HTML30)    PDF(pc) (2130KB)(1039)       Save

    [Objective] Camellia oleifera is one of the four major woody oil plants in the world. Diseases is a significant factor leading to the decline in quality of Camellia oleifera and the financial loss of farmers. Among these diseases, anthracnose is a common and severe disease in Camellia oleifera forests, directly impacting yields and production rates. Accurate disease assessment can improve the prevention and control efficiency and safeguarding the farmers' profit. In this study, an improved You Only Look at CoefficienTs (YOLACT) based method was proposed to realize automatic and efficient grading of the severity of Camellia oleifera leaf anthracnose. [Methods] High-resolution images of Camellia oleifera anthracnose leaves were collected using a smartphone at the National Camellia oleifera Seed Base of Jiangxi Academy of Forestry, and finally 975 valid images were retained after a rigorous screening process. Five data enhancement means were applied, and a data set of 5 850 images was constructed finally, which was divided into training, validation, and test sets in a ratio of 7:2:1. For model selection, the Camellia-YOLACT model was proposed based on the YOLACT instance segmentation model, and by introducing improvements such as Swin-Transformer, weighted bi-directional feature pyramid network, and HardSwish activation function. The Swin Transformer was utilized for feature extraction in the backbone network part of YOLACT, leveraging the global receptive field and shift window properties of the self-attention mechanism in the Transformer architecture to enhance feature extraction capabilities. Additionally, a weighted bidirectional feature pyramid network was introduced to fuse feature information from different scales to improve the detection ability of the model for objects at different scales, thereby improving the detection accuracy. Furthermore, to increase the the model's robustness against the noise in the input data, the HardSwish activation function with stronger nonlinear capability was adopted to replace the ReLu activation function of the original model. Since images in natural environments usually have complex background and foreground information, the robustness of HardSwish helped the model better handling these situations and further improving the detection accuracy. With the above improvements, the Camellia-YOLACT model was constructed and experimentally validated by testing the Camellia oleifera anthracnose leaf image dataset. [Results and Discussions] A transfer learning approach was used for experimental validation on the Camellia oleifera anthracnose severity grading dataset, and the results of the ablation experiments showed that the mAP75 of Camellia-YOLACT proposed in this study was 86.8%, mAPall was 78.3%, mAR was 91.6% which were 5.7%, 2.5% and 7.9% higher than YOLACT model. In the comparison experiments, Camellia-YOLACT performed better than Segmenting Objects by Locations (SOLO) in terms of both accuracy and speed, and its detection speed was doubled compared to Mask R-CNN algorithm. Therefore, the Camellia-YOLACT algorithm was suitable in Camellia oleifera gardens for anthracnose real-time segmentation. In order to verify the outdoors detection performance of Camellia-YOLACT model, 36 groups of Camellia oleifera anthracnose grading experiments were conducted. Experimental results showed that the grading correctness of Camellia oleifera anthracnose injection severity reached 94.4%, and the average absolute error of K-value was 1.09%. Therefore, the Camellia-YOLACT model proposed in this study has a better performance on the grading of the severity of Camellia oleifera anthracnose. [Conclusions] The Camellia-YOLACT model proposed got high accuracy in leaf and anthracnose segmentation of Camellia oleifera, on the basis of which it can realize automatic grading of the severity of Camellia oleifera anthracnose. This research could provide technical support for the precise control of Camellia oleifera diseases.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    GRA-WHO-TCN Combination Model for Forecasting Cold Chain Logistics Demand of Agricultural Products
    LIU Yan, JI Juncheng
    Smart Agriculture    2024, 6 (3): 148-158.   DOI: 10.12133/j.smartag.SA202310006
    Abstract437)   HTML37)    PDF(pc) (1280KB)(1589)       Save

    [Objective] As a critical component of agricultural product supply chain management, cold chain logistics demand prediction encounters challenges such as inadequate feature extraction, high nonlinearity of data, and the propensity for algorithms to become trapped in local optima during the digital transformation process. To address these issues and enhance the accuracy of demand prediction, achieve intelligent management of the agricultural product supply chain, a combined forecasting model that integrates grey relational analysis (GRA), the wild horse optimizer (WHO), and temporal convolutional networks (TCN) is proposed in this research. [Methods] Firstly, a cold chain logistics indicator system was established for the data of Zhejiang province, China, spanning the years 2000 to 2020. This system covered four key aspects: the economic scale of agricultural products, logistics transportation, digital technology, and agricultural product supply. Then, the GRA was applied to identify relevant indicators of cold chain logistics for agricultural products in Zhejiang province, with 17 indicators selected that had a correlation degree higher than 0.75. Sliding window technology, a problem-solving approach for data structures and algorithms, suitable for reducing the time complexity of data to a better level and improving the execution efficiency of algorithms, was used to partition the selected indicators. Secondly, the TCN model was employed to extract features of different scales by stacking multiple convolutional layers. Each layer utilized different-sized convolutional kernels to capture features within different time ranges. By utilizing the dilated convolutional module of TCN, temporal and spatial relationships within economic data were effectively mined, considering the temporal characteristics of socio-economic data and logistics information in the agricultural supply chain, and exploring the temporal and spatial features of economic data. Simultaneously, the WHO algorithm was applied to optimize five hyperparameters of the TCN model, including the number of TCN layers, the number of filters, residual blocks, Dense layers, and neurons within the Dense layer. Finally, the optimized GRA-WHO-TCN model was used to extract and analyze features from highly nonlinear multidimensional economic data, ultimately facilitating the prediction of cold chain logistics demand. [Results and Discussions] For comparative analysis of the superiority of the GRA-WHO-TCN model, the 17 selected indicators were input into long short-term memory (LSTM), TCN, WHO-LSTM, and WHO-TCN models. The parameters optimized by the WHO algorithm for the TCN model were set respectively: 2 TCN layer was, 2 residual blocks, 1 dense layer, 60 filters, and 16 neurons in the dense layer. The optimized GRA-WHO-TCN temporal model can effectively extract the temporal and spatial features of multidimensional data, fully explore the implicit relationships among indicator factors, and demonstrating good fitting effects. Compared to GRA-LSTM and GRA-TCN models, the GRA-TCN model exhibited superior performance, with a lower root mean square error of 37.34 and a higher correlation coefficient of 0.91, indicating the advantage of the TCN temporal model in handling complex nonlinear data. Furthermore, the GRA-WHO-LSTM and GRA-WHO-TCN models optimized by the WHO algorithm had improved prediction accuracy and stability compared to GRA-LSTM and GRA-TCN models, illustrating that the WHO algorithm effectively optimized model parameters to enhance the effectiveness of model fitting. When compared to the GRA-WHO-LSTM model, the GRA-WHO-TCN model displayed a lower root mean square error of 11.3 and an effective correlation coefficient of 0.95, predicting cold chain logistics demand quantities in Zhejiang province for the years 2016-2020 as 29.8, 30.46, 24.87, 26.45, and 27.99 million tons, with relative errors within 0.6%, achieving a high level of prediction accuracy. This achievement showcases a high level of prediction accuracy and underscores the utility of the GRA-WHO-TCN model in forecasting complex data scenarios. [Conclusions] The proposed GRA-WHO-TCN model demonstrated superior parameter optimization capabilities and predictive accuracy compared to the GRA-LSTM and GRA-TCN models. The predicted results align well with the development of cold chain logistics of agricultural products in Zhejiang province. This provides a scientific prediction foundation and practical reference value for the development of material flow and information flow in the agricultural supply chain under the digital economy context.

    Table and Figures | Reference | Related Articles | Metrics | Comments0